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Gliomas are the most common central nervous system tumors exhibiting poor 
survival, quality of life and neurological outcomes prompting significant discussion 
surrounding optimisation of the aggressiveness of management. The ability to estimate 
prognosis is crucial for both patients and providers in order to select the most appropriate 
treatment. Previous attempts at predicting survival outcomes have relied on clinical 
parameters (age, KPS, gender) and resection or methylation status and statistical models 
to create prognostic groups limiting survival prediction due to selection bias and tumor 
heterogeneity.  Machine learning (ML) allows for more sophisticated approaches to 
survival prediction amalgamating real world clinical, molecular and imaging data. We 
wanted to examine clinical parameters needed to achieve superior predictive accuracy in 
order to help advance guidelines for the creation and maintenance of robust large-scale 
glioma registries.  
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Introduction 
Gliomas are the most common central nervous system 

tumors. Gliomas are typically managed by maximal safe 
resection followed by radiation therapy, chemotherapy or in rare 
cases observation depending on the histology and clinical 
context [1,2,5]. The survival of glioma remains overall 
extremely poor with a 5-year overall survival less than 35% [3]. 
The ability to estimate prognosis is crucial for both patients and 
providers in order to select the most appropriate treatment that is 
sufficiently aggressive to allow for tumor control while 
minimizing adverse long term  normal tissue changes but also 
appropriately de-escalated when prognosis is poor and emphasis 
is on patient quality of life and best supportive care. Multiple 
attempts have been made to design robust scoring systems 
predictive of outcome for both low [4] and high- grade glioma 
[5,6]. Mostly, these have relied on clinical parameters (age, 
KarnofskyPerformace Status (KPS), gender) and resection or 
methylation status as well as statistical models to create 
prognostic groups [7,9,10] with survival prediction lacking 

generalisability secondary to: 1) small cohorts of patients, 2) the 
inclusion of (mostly) trial patients and 3) management of these 
patients at tertiary academic centers. The current approaches 
present limitations as: 1) most glioma patients are treated off 
study; 2) outside of centers of excellence; 3) do not necessarily 
benefit from expert pathology review or molecular analysis, and 
4) significant tumor heterogeneity further undermines the ability 
to predict survival. Existing evidence already suggests that 
patients falling outside of these settings may have poorer 
outcomes [11,12] and therefore existing scoring systems may not 
necessarily reflect their prognosis. Machine learning (ML) can 
allow for more sophisticated approaches to clinical, molecular 
and imaging data to predict risk and survival [13-18].  In this 
study we aimed to explore the effectiveness of both ML and 
statistical approaches to predict survival in glioma patients using 
a set of commonly available clinical features in a real-world 
evidence cohort using a larger glioma dataset representative of a 
high volume publicly funded system – the BC Cancer registry 
which includes patients of all glioma histological subtypes 
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treated largely off trial over the course of nearly 20 years in the 
province of British Columbia, Canada.  
2. Material and Methods 
2.1 Study cohort  

 Data from 3907 glioma patients diagnosed between 2000 
and 2018 was obtained from the BC Cancer Registry following 
research ethics board approval. Patients who received treatment 
out of province (14) or for whom any of the features necessary 
for the analysis were not captured (317), were excluded. Only 
patients with a pathological diagnosis of glioma were included 
and uncommon glioma histologies with less than 0.5% recorded 
cases in the dataset were excluded. Overall, 3462 patients were 
included in the analysis. Adari et al. has been published for their 
work on applying artificial neural networks to fiber-reinforced 
polymer composites, evaluated using the ARAS method, in SOJ 
Materials Science and Engineering.[31] 
2.2 Training and Test datasets 

The overall dataset was split into two into two mutually 
exclusive datasets with a 7:3 training data to test data ratio by 
random sampling. The same training and test dataset were used 
for all models. Each dataset contained the following features: 
age, sex, administration of chemotherapy, surgical resection, 
administration of radiation therapy, tumor histology and tumor 
site.  
2.3 Modeling and Prediction 

Three modeling methods were implemented using open 
source python libraries, scikit-survival by Pölsterl et al [19-21]. 
Each model was trained using the entire training set and was 
applied to predict a risk score and survival function for each 
patient in the test set. Predicted median survival time was the 
time at 0.5 survival probability derived from the survival 
function. The accuracy of the survival prediction was evaluated 
by Concordance Index (c-index), calculated using the python 
package Lifelines (https://doi.org/10.5281/zenodo.1252342).  
2.3.1 Cox Proportional hazards (CPH) model  

The CPH model is the linear regression model most widely 
used in survival studies to predict the risk of an outcome based 
on multiple variables [24].  We built a CPH model using clinical 
features in the training data as covariates.  
2.3.2 Support Vector Machine (SVM) model  

We optimized a linear SVM classifier through a 
hyperparameter search to find the best regularization 
hyperparameter which was used to train the classifier using the 
entire training set.  
2.3.3 Random Forest (RF) Model  

The random forest consists of 1000 decision trees trained 
using the training dataset. Risk score prediction  were the 
average across all trees in the forest [25]. The feature importance 
score of each feature was calculated by the decrease in 

concordance index of the test dataset if it was made unavailable 
by assigning random value to it for all patients [26].  
2.3 Kaplan Meier (KM) Survival curves  

KM survival curves were plotted to compare training and 
test datasets. The log rank-test [22, 23] was used to determine if 
there is a significant difference between the survival 
distributions of the training and test dataset, using the Python 
package Lifelines (https://doi.org/10.5281/zenodo.1252342).  

While there is currently no established consensus on how to 
approach representation of this type of predictive survival 
analysis in figures, KM survival curves were plotted to compare 
the median survival time predicted by the model and the 
clinically recorded survival time of the patients in the test dataset 
as other authors have employed similar approaches [27-29]. 
Patients who were still alive at the time of the analysis were 
removed for plotting these two KM curves since model 
predictions would not include censoring status at the end of the 
study and a KM curve of predicted median survival for those 
patients whose censoring status is not known would not be 
appropriate.  Therefore, we removed all censored pts from the 
recorded test data and predicted survival data. In order to show 
potential clinical application, we used both c-index (which 
includes both censored and uncensored patients as it is based on 
event risk ranking) and log rank test (resulting in survival time 
predicted vs recorded survival time where we only used 
uncensored data).  
3. Results 
3.1 Clinical characteristics 

3462 patients with a diagnosis of glioma treated between 
2000 and 2018 were included in the analysis.  2113 (61%) were 
male and 1349 (39%) female. Histological distribution was: 
glioblastoma 1555(45%), astrocytoma 926 (27%), 
oligodendroglioma 299 (9%), mixed glioma 267 (8%), 
anaplastic oligodendroglioma 130 (4%), glioma malignant 118 
(3%), anaplastic astrocytoma 70 (2%), other glioma histologies 
(2%) (Table 1). 1119 (33%), 795 (23%) and 117 (3%) of tumors 
originated in the frontal lobe, temporal and occipital lobe 
respectively. 2410 (70%) had maximal safe surgical resection 
whilst the remainder, 1052 (30%) had biopsy only. 2730 (79%) 
total patients received RT. At the time of the analysis 1831 
(53%) had not received chemotherapy, 1515 (44%) had received 
chemotherapy immediately following diagnosis, 81 (2%) 
received subsequent chemotherapy and 35 (1%) received both 
initial and subsequent chemotherapy. Molecular characterization 
including MGMT status and patient performance status were not 
captured in the BC Cancer registry data.  
3.2 Training and testing datasets 

The training and testing datasets were created using random 
sampling of the overall dataset in a 7:3 ratio and there was no 
statistically significant difference in survival between the 
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training and testing datasets (log rank test p=0.99) (Figure 1) and 
minimal difference in c-index between training and test dataset 
across all models (Figure 2).  
3.3 ML models for survival prediction 

C-index is a commonly used method comparing the ranking 
of survival time recorded in a clinical dataset to the ranking of 
predicted risk for death. A score c-index of 0.5 is expected from 
random prediction and 1.0 is expected if two rankings are in 
perfect concordance [22]. Concordance index (c-index) adjusted 
for right censoring was calculated for the test dataset using risk 
score predicted by each model training different combinations of 
features numbered as 1) Age, 2) Sex, 3) Tumor Histology, 4) 
Tumor site, 5) Tumor resection, 6) Radiation therapy (RT), 7) 
Chemotherapy. The prediction accuracy was lowest when the 
model did not take into account information on management 
(features 6 and 7 representative of administration of RT and 
chemotherapy respectively) (Figure 3). The highest survival 
prediction accuracy was obtained using a model that takes into 
account information on patient characteristics, tumor 
characteristics and cancer management with CI of 0.767, 0.771 
and 0.757 for CPH, SVM and RF models respectively (Figure 
3).  
3.4 Clinical features predictive importance 

The variables available in the dataset and employed in the 
analysis were age, sex, administration of chemotherapy, surgical 
resection, administration of radiation therapy, tumor histology 
and tumor site. The predictive value of each variable in the CPH 
model, calculated as the c-index of the test dataset obtained from 
a univariate CPH analysis using this variable , ranging from 0.5 
indicating random prediction, for gender and 0.69 for age (Table 
2). In the RF model, each feature was assigned a feature 
importance score calculated by the decrease in the concordance 
index of the test dataset predicted by RF model if this feature 
were not available (Table 3). Both models show that 
chemotherapy, followed by RT are more predictive than any 
features other than age. 
3.4 Survival models 

All three models CPH, SVM and RF performed reasonably 
well (Figure 4 A, B, C) as seen in the predicted survival 
probability for 3 sample patients (figure simplified to include 
only 3 sample patients for ease of interpretation) (entire patient 
sample supplemental Figure 1).The clinical information for each 
patient is as follows: Patient 1: 67-year-old male diagnosed with 
oligodendroglioma NOS in overlapping areas of the brain (site = 
Brain, overlapping lesion) who received chemotherapy and no 
surgical resection or radiation. Patient 2: 83-year-old female 
diagnosed with glioblastoma located in the cerebrum managed 
with surgical resection only (no chemotherapy or radiation). 
Patient 3 was a 69-year-old male diagnosed with anaplastic 
oligodendroglioma located in the front lobe who passed away 7 
days after diagnosis not having received any therapy. Only 
uncensored patients were used for generation the KM survival 

curve as the model predictions do not include censoring status. 
There was no statistically significant difference between the 
recorded survival time distribution and the predicted median 
survival time distribution using the CPH and RF models for the 
test dataset, p = 0.07 and p = 0.61 respectively (Figure 4 D and 
F). The difference between SVM predicted median survival 
distribution was statically significant from the recorded survival 
time, p<0.005 (Figure 4E).  
4. Discussion 

ML as a tool towards superior prediction of clinical 
outcomes has increased in popularity in all domains of medicine 
including oncology [16, 17 30, 31, 32, 33] driven by the need to 
rapidly harness clinically relevant results when prospective data 
is unavailable and impossible to obtain such as in the context of 
the COVID-19 pandemic.  

Using a large retrospective glioma patient cohort originating 
in the BC Cancer registry in British Columbia, Canada, we 
explore the ability to predict survival while employing 
exclusively non radiomic, non-molecular data features generally 
available in most high volume cancer centers treating gliomas. 
We achieved excellent survival prediction with c-index ranging 
from 0.757 (RF model) to 0.771 (SVM model) while including 
the following features:1) Age, 2) Sex, 3) Tumor Histology, 4) 
Tumor site, 5) Tumor resection, 6) Radiation therapy (RT), 7) 
Chemotherapy, the lowest common denominators embedded in 
most large brain tumor registries.  

Most ML survival prediction studies aimed at patients with 
glioma center around MRI radiomics or histological features  as 
a result involving smaller patient populations as proof of concept 
(Tan et al 2019 MRI radiomics,(n =147), Papp et al 2018 (PET, 
n= 70)  Mobadersany et al. 2018 (histology and genomics n = 
769), Mizutani et al 2019 (radiation dosimetry, n =35). Our 
patient characteristics and tumor management features are more 
similar to large retrospective registry studies such as the SEER 
database which using traditional statistical analysis has been 
employed to develop nomograms in the context of low grade 
glioma (Zhao Y et al, 2019) (3732 patients), oligodendroglioma 
(2689 patients) (Brandel et al., 2017), high-grade glioma (6395 
patients) (Yang et al., 2020) and glioblastoma [16].  

The CPH model has been the gold standard for survival 
analysis involving a semi-parametric statistical modelling 
approach where the survival outcome is a linear combination of 
predictive variables. Although popular, CPH operates on the 
underlying assumption that predictive variables are independent 
and do not interact, and their impact on survival do not change 
over time. We hypothesized that these assumptions are unlikely 
to hold true when considering: 1) the large number of predictive 
features potentially available in cancer patients and 2) that fact 
that these features are likely to interact with each other in an 
unforeseen manner [16]. Therefore, we selected two ML 
methods Support Vector Machine (SVM) and Random Forest 
(RF) that can deal with predictive features that have potential 
interactions and are easy to interpret and generalizable in terms 
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of presence in medical literature [16,17]. The SVM approach 
assigns weight to each predictive feature to produce a score that 
maximizes concordance between predicted survival ranking and 
recorded survival time ranking [28]. By contrast the RF 
approach takes the average of a collection of decision trees 
where the branches are split based on values of the predictive 
features [29]. All three models ultimately produced equal or 
indeed superior c-index in comparison with the literature [16, 
30-36].  

We achieved a higher c-index using the ranking based SVM 
model as compared to the other two models. However, our SVM 
model exhibited a difference between SVM predicted median 
survival time distribution and the recorded survival time. This 
was likely secondary to our selection of a rank based SVM 
approach which optimizes risk ranking. A regression based SVM 
model can be explored in further analysis for potential better 
survival time prediction [27]. We found some parallels with 
Nemati et al. who employed real world data to predict hospital 
discharge for COVID-19 patients [17] and Senders et al. who 
employed  20821 glioblastoma patients originating in SEER 
database to predict survival at 1 year following diagnosis. Both 
employed c-index as a performance metric and focused on risk 
factor analysis and 1 year survival classification respectively but 
stopped short of comparing predicted and recorded discharge or 
survival time as c-index is solely based on ranking of times of 
events in all possible pairs [16,17]. To enhance clinical 
applicability, it was important to us to compare the predicted 
survival time to actual survival time and we employed log rank 
test to accomplish this using uncensored data. Further analysis 
alternatives could include using alternate weighting methods to 
include censored data and comparison with accelerated failure 
time (AFT) algorithms [16,19,37].  

Similar to other studies employing large scale retrospective 
data, the current study is limited by lack of information with 
respect to patient performance status, molecular features and the 
detailed timing of chemotherapy administration in relationship to 
diagnosis and RT administration, all currently not being 
collected as part of the BC Cancer registry. Additional 
limitations are posed by the lack of vital status information for 
some patients and the possibility that abrupt events not directly 
related to patient characteristics, histology or management that 
may have affected outcome. Whilst we do have information on 
the intention to have administered RT or chemotherapy, the 
current analysis does not take into account whether the treatment 
was in fact ultimately administered or completed as intended.  

Ultimately both ML methods achieved good predictive 
ability on par with the gold standard (CPH) in a large dataset but 
similarly to other studies [16,17], they did not outperform the 
CPH statistical model acknowledging that in the context of 
additional highly complex interacting features (radiomic, RT 
dosimetry, detailed genomic and pharmaceutical data), machine 
and deep learning models are likely to perform better [13-15].  
The robust capture and inclusion of the above features comprise 
future directions in the field of oncology.  

The patient population and outcomes of our population are 
similar to other large series [16, 30-33] and we determined that 
management as a feature was crucial in achieving superior 
predictive capability for all models. Our study is a first step 
towards future investigations into the potential of involving ML 
models in personalized treatment planning where model 
predicted survival times for different treatment options can be 
take into consideration when determining the optimal 
management plan for each patient especially in cases such as 
glioma management, where the intricacies of administration of 
chemotherapy can be a source of clinical debate (concurrent 
versus sequential, number of cycles and patient selection). The 
fact that these aspects of management are often incompletely 
captured and hence often used as a dichotomy chemotherapy 
(yes/no) should be remedied. Future studies are required to 
address the issue of how ML encapsulates the a priori 
complexity of clinical decision making and the implications for 
patient outcomes juxtaposed with the ability to create clinically 
meaningful ML models that appropriately disentangle the 
multiple factors involved. 

Our efforts in this study highlight both the need to create 
reliable clinician/ML connections as much as the need for 
increasingly robust datasets that capture the intricacies of patient 
management in large scale registries. This means more clinical 
oversight of data coding in registries as well as quality assurance 
of patient management as is now increasingly performed via 
peer review in tertiary care institutions. The ability to work from 
a platform of consensus will allow for meaningful conclusions 
based on ML eventually on par with those currently obtained 
from prospective trials. Ongoing efforts and future directions 
involve in depth survival modeling aimed specifically at the 
management and outcomes of elderly patients with a glioma 
diagnosis as well as that of patients with lower grade gliomas 
and incorporation of large-scale systemic management data into 
existing models.  
Materials and Methods: We employed three approaches: Cox 
Proportional hazards (CPH) model, Support Vector Machine 
(SVM) model, Random Forest (RF) model in a large glioma 
dataset (3462 patients, diagnosed 2000-2018) originating in the 
BC Cancer Registry to explore the most optimal approach to 
survival prediction. Training and testing datasets were created 
using random sampling in a 7:3 ratio with no statistically 
significant difference in survival between the training and testing 
sets. Featured employed were age, sex, surgical resection, tumor 
histology and tumor site, administration of radiation therapy 
(RT) and chemotherapy. Concordance index (c-index) (CI) was 
employed to compare the ranking of survival time recorded in 
clinical dataset to the ranking of predicted risk for death and 
adjusted for right censoring using risk score predicted by each 
model training different combinations of features where: 1) Age, 
2) Sex, 3) Tumor Histology, 4) Tumor site, 5) Tumor resection, 
6) RT, 7) Chemotherapy. 
Results: 2113 (61%) of patients were male and 1349 (39%) 
female. Histological distribution was glioblastoma 1555 (45%), 
astrocytoma 926 (27%), oligodendroglioma 299 (9%), mixed 
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glioma 267 (8%), anaplastic oligodendroglioma 130 (4%), 
glioma malignant 118 (3%), anaplastic astrocytoma 70 (2%), 
other glioma histologies (2%). 2410 (70%) had maximal safe 
surgical resection, 1052 (30%) had biopsy only. 2730 (79%) 
total patients received RT. 1631 (48%) overall received 
chemotherapy (1515 (44%) immediately following diagnosis, 81 
(2%)  subsequent chemotherapy, 35 (1%) both initial and 
subsequent). There was no statistically significant difference 
between the recorded and predicted median survival time 
distribution using the CPH and RF models for the test dataset, p 
= 0.07 and p = 0.61 respectively. The difference between SVM 
predicted median survival distribution was statistically 
significant from the recorded survival time, p<0.005. All three 
models performed well with prediction accuracy highest (CI 

0.757, 0.767, 0.771 for RF, CPH, SVM models respectively) 
when taking incorporating RT and chemotherapy administration 
features. 
5. Conclusions 

We achieved superior survival prediction performance with 
the aforementioned ML studies as compared to other ML and 
non-ML approaches in the literature while employing 
exclusively widely available clinical sets of features. The 
administration of chemotherapy and RT emerged as key features 
raising questions as to the potential for superior results that may 
be achieved through further optimization and clinical oversight 
of large-scale real world datasets to allow for clinically relevant 
results to be generated by ML approaches. 

 
Table 1. Characteristics of training and testing sets. 

Table 2. Predictive value of each variable under Cox 
Proportional hazards (CPH) model. The predictive value of 

    Training Set (n=2423) Test Set (n=1039) Total   (n=3462) 
Age (SD)   15 15 15 
Sex Male 1483 (61.2%) 630 (60.6%) 2113 (61.0%) 

Female 940 (38.8%) 409 (39.4%) 1349 (39.0%) 
Histology Glioblastoma, NOS 1085 (44.8%) 470 (45.2%) 1555 (44.9%) 

Astrocytoma, NOS 636 (26.2%) 290 (27.9%) 926 (26.7%) 
Oligodendroglioma, NOS  220 (9.1%) 79 (7.6%) 299 (8.6%) 
Mixed Glioma 185 (7.6%) 82 (7.9%) 267 (7.7%) 
Anaplastic Oligodendroglioma 98 (4.0% 32 (3.1%) 130 (3.8%) 
Glioma, malignant 86 (3.5%) 32 (3.1%) 118 (3.4%) 
Anaplastic astrocytoma 47 (1.9%) 23 (2.2%) 70 (2.0%) 
Giant cell glioblastoma 19 (0.8%) 11 (1.1%) 30 (0.9%) 
Gliosarcoma 20 (0.8%) 7 (0.7%) 27 (0.8%) 
Pilocytic Astrocytoma 16 (0.7%) 8 (0.8%) 24 (0.7%) 
Fibrillary astrocytoma 11 (0.5%) 5 (0.5%) 16 (0.5%) 

Site Frontal lobe 781 (32.2%) 338 (32.5%) 1119 (32.3%) 
Temporal lobe 558 (23.0%) 237 (22.8%) 795 (23.0%) 
Brain, overlapping lesion 408 (16.8%) 187 (18.0%) 595 (17.2%) 
Parietal lobe 372 (15.4%) 140 (13.5%) 512 (14.8%) 
Occipital lobe 70 (2.9%) 47 (4.5%) 117 (3.4%) 
Brain, unspecified 90 (3.7%) 28 (2.7%) 118 (3.4%) 
Cerebrum 69 (2.8%) 25 (2.4%) 94 (2.7%) 
Brain stem 38 (1.6%) 16 (1.5%) 54 (1.6%) 
Spinal cord 13 (0.5%) 10 (1.0%) 23 (0.7%) 
Cerebellum, NOS 17 (0.7%) 7 (0.7%) 24 (0.7%) 
Ventricle, NOS 7 (0.3%) 4 (0.4%) 11 (0.3%) 

Surgery Surgical Resection 1666 (68.8%) 744 (71.6%) 2410 (69.6%) 
No Surgical Resection 757 (31.2%) 295 (28.4%) 1052 (30.4%) 

Radiation Radiation Therapy 1906 (78.7%) 814 (78.3%) 2730 (78.6%) 
No Radiation Therapy 517 (21.3%) 225 (21.7%) 742 (21.4%) 

Chemotherapy No Chemotherapy 1274 (52.6%) 557 (53.6%) 1831 (52.9%) 
 Concurrent Chemotherapy 1072 (44.2%) 443 (42.6%) 1515 (43.8%) 
 Subsequent Chemotherapy 53 (2.2%) 28 (2.7%) 81 (2.3%) 
 Initial and Subsequent 

Chemotherapy 
24 (1.0%) 11 (1.1%) 35 (1.0%) 
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each variable is the concordance index of the test dataset using 
predictions made by the model containing only this variable. 
Variable Predictive value
Patient characteristic 
Age 0.69 
Sex 0.50  
Chemotherapy  0.63 
Radiation Therapy 0.60 
Surgical resection 0.57 
Tumor Histology 0.60 
Tumor Site 0.55 
 
List of Abbreviations 
CPH - Cox Proportional Hazards Model 
SVM -  Support Vector Machine Model 
RF - Random Forest Model 
BC - British Columbia 
RT- Radiation Therapy 
KPS - Karnofsky Performace Status  
DNET- Dysembryoplastic neuroepithelial tumors 
KM -  Kaplan Meier 
 

Figure 1. Kaplan Meier overall survival for the training and 
testing datasets.  
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each variable is the concordance index of the test dataset using 
predictions made by the model containing only this variable.  

Predictive value 

Dysembryoplastic neuroepithelial tumors  

Table 3. Most important features as identified in the 
Forest (RF) model. The feature importance score of each feature 
is shown as calculated by the decrease in the concordance index 
of the test dataset predicted by RF model if this feature were not 
available. Features with feature importance score less than 0.001 
and Histology/Site features applying only to relatively small 
portions of the data are not shown.  
Feature Feature Importance Score
Age 0.080 
Chemotherapy  0.031 
Radiation therapy  0.020 
Histology = Glioblastoma 0.020 
Histology =  
Oligodendroglioma 0.011 
Histology = Astrocytoma 0.010 
Surgical Resection 0.006 
Tumor site =  
Frontal lobe 0.003 
Tumor site= 
Temporal lobe 0.001 

Kaplan Meier overall survival for the training and  

Most important features as identified in the Random 
. The feature importance score of each feature 

decrease in the concordance index 
of the test dataset predicted by RF model if this feature were not 
available. Features with feature importance score less than 0.001 
and Histology/Site features applying only to relatively small 

 
Feature Importance Score 
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Figure 2. Survival prediction accuracy of each model for 
training and test dataset. 

The difference in c-index between training and test dataset 
is minimal across all models, suggesting that no overfitting of 
the training data. The model predictions were generalizable to 
the unused test data. Cox = Cox Proportional hazard
model.  SVM = Support Vector Machine (SVM) model, RF = 
Random Forest (RF) model.  

Figure 4. Predicted survival curves for three patients in the test da
respectively. CorrespondingKM survival curves for recorded survival times in test dataset and KM survival curve for predicted
median survival times using D. CPH model. E. 
Vector Machine (SVM) model, RF = Random Forest (RF) model.
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index between training and test dataset 
is minimal across all models, suggesting that no overfitting of 
the training data. The model predictions were generalizable to 
the unused test data. Cox = Cox Proportional hazards (CPH) 
model.  SVM = Support Vector Machine (SVM) model, RF = 

Figure 3. Survival prediction accuracy of each model using 
different combinations of features where: 1) Age, 2) Sex, 3) 
Tumor Histology, 4) Tumor site, 5) Tumor res
Radiation therapy (RT), 7) Chemotherapy. CPH = Cox 
Proportional hazards model.  SVM = Support Vector Machine 
(SVM) model, RF = Random Forest (RF) model.

Predicted survival curves for three patients in the test dataset using A. CPH model. B. 
respectively. CorrespondingKM survival curves for recorded survival times in test dataset and KM survival curve for predicted

 SVM model. F.  RF model. CPH = Cox Proportional hazards model.  SVM = Support 
Vector Machine (SVM) model, RF = Random Forest (RF) model. 

 

 
Survival prediction accuracy of each model using 

different combinations of features where: 1) Age, 2) Sex, 3) 
Tumor Histology, 4) Tumor site, 5) Tumor resection, 6) 
Radiation therapy (RT), 7) Chemotherapy. CPH = Cox 
Proportional hazards model.  SVM = Support Vector Machine 
(SVM) model, RF = Random Forest (RF) model. 

 
 SVM model. C. RF model 

respectively. CorrespondingKM survival curves for recorded survival times in test dataset and KM survival curve for predicted 
x Proportional hazards model.  SVM = Support 
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