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Gliomas are the most common central nervous system tumors exhibiting poor
survival, quality of life and neurological outcomes prompting significant discussion
surrounding optimisation of the aggressiveness of management. The ability to estimate
prognosis is crucial for both patients and providers in order to select the most appropriate
treatment. Previous attempts at predicting survival outcomes have relied on clinical
parameters (age, KPS, gender) and resection or methylation status and statistical models
to create prognostic groups limiting survival prediction due to selection bias and tumor
heterogeneity. Machine learning (ML) allows for more sophisticated approaches to
survival prediction amalgamating real world clinical, molecular and imaging data. We
wanted to examine clinical parameters needed to achieve superior predictive accuracy in
order to help advance guidelines for the creation and maintenance of robust large-scale
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Introduction

Gliomas are the most common central nervous system
tumors. Gliomas are typically managed by maximal safe
resection followed by radiation therapy, chemotherapy or in rare
cases observation depending on the histology and clinical
context [1,2,5]. The survival of glioma remains overall
extremely poor with a 5-year overall survival less than 35% [3].
The ability to estimate prognosis is crucial for both patients and
providers in order to select the most appropriate treatment that is
sufficiently aggressive to allow for tumor control while
minimizing adverse long term normal tissue changes but also
appropriately de-escalated when prognosis is poor and emphasis
is on patient quality of life and best supportive care. Multiple
attempts have been made to design robust scoring systems
predictive of outcome for both low [4] and high- grade glioma
[5,6]. Mostly, these have relied on clinical parameters (age,
KarnofskyPerformace Status (KPS), gender) and resection or
methylation status as well as statistical models to create
prognostic groups [7,9,10] with survival prediction lacking

generalisability secondary to: 1) small cohorts of patients, 2) the
inclusion of (mostly) trial patients and 3) management of these
patients at tertiary academic centers. The current approaches
present limitations as: 1) most glioma patients are treated off
study; 2) outside of centers of excellence; 3) do not necessarily
benefit from expert pathology review or molecular analysis, and
4) significant tumor heterogeneity further undermines the ability
to predict survival. Existing evidence already suggests that
patients falling outside of these settings may have poorer
outcomes [11,12] and therefore existing scoring systems may not
necessarily reflect their prognosis. Machine learning (ML) can
allow for more sophisticated approaches to clinical, molecular
and imaging data to predict risk and survival [13-18]. In this
study we aimed to explore the effectiveness of both ML and
statistical approaches to predict survival in glioma patients using
a set of commonly available clinical features in a real-world
evidence cohort using a larger glioma dataset representative of a
high volume publicly funded system — the BC Cancer registry
which includes patients of all glioma histological subtypes
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treated largely off trial over the course of nearly 20 years in the
province of British Columbia, Canada.
2. Material and Methods

2.1 Study cohort

Data from 3907 glioma patients diagnosed between 2000
and 2018 was obtained from the BC Cancer Registry following
research ethics board approval. Patients who received treatment
out of province (14) or for whom any of the features necessary
for the analysis were not captured (317), were excluded. Only
patients with a pathological diagnosis of glioma were included
and uncommon glioma histologies with less than 0.5% recorded
cases in the dataset were excluded. Overall, 3462 patients were
included in the analysis. Adari et al. has been published for their
work on applying artificial neural networks to fiber-reinforced
polymer composites, evaluated using the ARAS method, in SOJ
Materials Science and Engineering.[31]

2.2 Training and Test datasets

The overall dataset was split into two into two mutually
exclusive datasets with a 7:3 training data to test data ratio by
random sampling. The same training and test dataset were used
for all models. Each dataset contained the following features:
age, sex, administration of chemotherapy, surgical resection,
administration of radiation therapy, tumor histology and tumor
site.

2.3 Modeling and Prediction

Three modeling methods were implemented using open
source python libraries, scikit-survival by Polsterl et al [19-21].
Each model was trained using the entire training set and was
applied to predict a risk score and survival function for each
patient in the test set. Predicted median survival time was the
time at 0.5 survival probability derived from the survival
function. The accuracy of the survival prediction was evaluated
by Concordance Index (c-index), calculated using the python
package Lifelines (https://doi.org/10.5281/zenodo.1252342).
2.3.1 Cox Proportional hazards (CPH) model

The CPH model is the linear regression model most widely
used in survival studies to predict the risk of an outcome based
on multiple variables [24]. We built a CPH model using clinical
features in the training data as covariates.

2.3.2 Support Vector Machine (SVM) model

We optimized a linear SVM classifier through a
hyperparameter search to find the best regularization
hyperparameter which was used to train the classifier using the
entire training set.

2.3.3 Random Forest (RF) Model

The random forest consists of 1000 decision trees trained
using the training dataset. Risk score prediction were the
average across all trees in the forest [25]. The feature importance
score of each feature was calculated by the decrease in

concordance index of the test dataset if it was made unavailable
by assigning random value to it for all patients [26].

2.3 Kaplan Meier (KM) Survival curves

KM survival curves were plotted to compare training and
test datasets. The log rank-test [22, 23] was used to determine if
there is a significant difference between the survival
distributions of the training and test dataset, using the Python
package Lifelines (https://doi.org/10.5281/zenodo.1252342).

While there is currently no established consensus on how to
approach representation of this type of predictive survival
analysis in figures, KM survival curves were plotted to compare
the median survival time predicted by the model and the
clinically recorded survival time of the patients in the test dataset
as other authors have employed similar approaches [27-29].
Patients who were still alive at the time of the analysis were
removed for plotting these two KM curves since model
predictions would not include censoring status at the end of the
study and a KM curve of predicted median survival for those
patients whose censoring status is not known would not be
appropriate. Therefore, we removed all censored pts from the
recorded test data and predicted survival data. In order to show
potential clinical application, we used both c-index (which
includes both censored and uncensored patients as it is based on
event risk ranking) and log rank test (resulting in survival time
predicted vs recorded survival time where we only used
uncensored data).

3. Results
3.1 Clinical characteristics

3462 patients with a diagnosis of glioma treated between
2000 and 2018 were included in the analysis. 2113 (61%) were
male and 1349 (39%) female. Histological distribution was:
glioblastoma 1555(45%), astrocytoma 926 (27%),
oligodendroglioma 299 (9%), mixed glioma 267 (8%),
anaplastic oligodendroglioma 130 (4%), glioma malignant 118
(3%, anaplastic astrocytoma 70 (2%), other glioma histologies
(2%) (Table 1). 1119 (33%), 795 (23%) and 117 (3%) of tumors
originated in the frontal lobe, temporal and occipital lobe
respectively. 2410 (70%) had maximal safe surgical resection
whilst the remainder, 1052 (30%) had biopsy only. 2730 (79%)
total patients received RT. At the time of the analysis 1831
(53%) had not received chemotherapy, 1515 (44%) had received
chemotherapy immediately following diagnosis, 81 (2%)
received subsequent chemotherapy and 35 (1%) received both
initial and subsequent chemotherapy. Molecular characterization
including MGMT status and patient performance status were not
captured in the BC Cancer registry data.

3.2 Training and testing datasets

The training and testing datasets were created using random
sampling of the overall dataset in a 7:3 ratio and there was no
statistically significant difference in survival between the
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training and testing datasets (log rank test p=0.99) (Figure 1) and
minimal difference in c-index between training and test dataset
across all models (Figure 2).

3.3 ML models for survival prediction

C-index is a commonly used method comparing the ranking
of survival time recorded in a clinical dataset to the ranking of
predicted risk for death. A score c-index of 0.5 is expected from
random prediction and 1.0 is expected if two rankings are in
perfect concordance [22]. Concordance index (c-index) adjusted
for right censoring was calculated for the test dataset using risk
score predicted by each model training different combinations of
features numbered as 1) Age, 2) Sex, 3) Tumor Histology, 4)
Tumor site, 5) Tumor resection, 6) Radiation therapy (RT), 7)
Chemotherapy. The prediction accuracy was lowest when the
model did not take into account information on management
(features 6 and 7 representative of administration of RT and
chemotherapy respectively) (Figure 3). The highest survival
prediction accuracy was obtained using a model that takes into
account information on patient characteristics, tumor
characteristics and cancer management with CI of 0.767, 0.771
and 0.757 for CPH, SVM and RF models respectively (Figure
3).

3.4 Clinical features predictive importance

The variables available in the dataset and employed in the
analysis were age, sex, administration of chemotherapy, surgical
resection, administration of radiation therapy, tumor histology
and tumor site. The predictive value of each variable in the CPH
model, calculated as the c-index of the test dataset obtained from
a univariate CPH analysis using this variable , ranging from 0.5
indicating random prediction, for gender and 0.69 for age (Table
2). In the RF model, each feature was assigned a feature
importance score calculated by the decrease in the concordance
index of the test dataset predicted by RF model if this feature
were not available (Table 3). Both models show that
chemotherapy, followed by RT are more predictive than any
features other than age.

3.4 Survival models

All three models CPH, SVM and RF performed reasonably
well (Figure 4 A, B, C) as seen in the predicted survival
probability for 3 sample patients (figure simplified to include
only 3 sample patients for ease of interpretation) (entire patient
sample supplemental Figure 1).The clinical information for each
patient is as follows: Patient 1: 67-year-old male diagnosed with
oligodendroglioma NOS in overlapping areas of the brain (site =
Brain, overlapping lesion) who received chemotherapy and no
surgical resection or radiation. Patient 2: 83-year-old female
diagnosed with glioblastoma located in the cerebrum managed
with surgical resection only (no chemotherapy or radiation).
Patient 3 was a 69-year-old male diagnosed with anaplastic
oligodendroglioma located in the front lobe who passed away 7
days after diagnosis not having received any therapy. Only
uncensored patients were used for generation the KM survival

curve as the model predictions do not include censoring status.
There was no statistically significant difference between the
recorded survival time distribution and the predicted median
survival time distribution using the CPH and RF models for the
test dataset, p = 0.07 and p = 0.61 respectively (Figure 4 D and
F). The difference between SVM predicted median survival
distribution was statically significant from the recorded survival
time, p<0.005 (Figure 4E).

4. Discussion

ML as a tool towards superior prediction of clinical
outcomes has increased in popularity in all domains of medicine
including oncology [16, 17 30, 31, 32, 33] driven by the need to
rapidly harness clinically relevant results when prospective data
is unavailable and impossible to obtain such as in the context of
the COVID-19 pandemic.

Using a large retrospective glioma patient cohort originating
in the BC Cancer registry in British Columbia, Canada, we
explore the ability to predict survival while employing
exclusively non radiomic, non-molecular data features generally
available in most high volume cancer centers treating gliomas.
We achieved excellent survival prediction with c-index ranging
from 0.757 (RF model) to 0.771 (SVM model) while including
the following features:1) Age, 2) Sex, 3) Tumor Histology, 4)
Tumor site, 5) Tumor resection, 6) Radiation therapy (RT), 7)
Chemotherapy, the lowest common denominators embedded in
most large brain tumor registries.

Most ML survival prediction studies aimed at patients with
glioma center around MRI radiomics or histological features as
a result involving smaller patient populations as proof of concept
(Tan et al 2019 MRI radiomics,(n =147), Papp et al 2018 (PET,
n= 70) Mobadersany et al. 2018 (histology and genomics n =
769), Mizutani et al 2019 (radiation dosimetry, n =35). Our
patient characteristics and tumor management features are more
similar to large retrospective registry studies such as the SEER
database which using traditional statistical analysis has been
employed to develop nomograms in the context of low grade
glioma (Zhao Y et al, 2019) (3732 patients), oligodendroglioma
(2689 patients) (Brandel et al., 2017), high-grade glioma (6395
patients) (Yang et al., 2020) and glioblastoma [16].

The CPH model has been the gold standard for survival
analysis involving a semi-parametric statistical modelling
approach where the survival outcome is a linear combination of
predictive variables. Although popular, CPH operates on the
underlying assumption that predictive variables are independent
and do not interact, and their impact on survival do not change
over time. We hypothesized that these assumptions are unlikely
to hold true when considering: 1) the large number of predictive
features potentially available in cancer patients and 2) that fact
that these features are likely to interact with each other in an
unforeseen manner [16]. Therefore, we selected two ML
methods Support Vector Machine (SVM) and Random Forest
(RF) that can deal with predictive features that have potential
interactions and are easy to interpret and generalizable in terms
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of presence in medical literature [16,17]. The SVM approach
assigns weight to each predictive feature to produce a score that
maximizes concordance between predicted survival ranking and
recorded survival time ranking [28]. By contrast the RF
approach takes the average of a collection of decision trees
where the branches are split based on values of the predictive
features [29]. All three models ultimately produced equal or
indeed superior c-index in comparison with the literature [16,
30-36].

We achieved a higher c-index using the ranking based SVM
model as compared to the other two models. However, our SVM
model exhibited a difference between SVM predicted median
survival time distribution and the recorded survival time. This
was likely secondary to our selection of a rank based SVM
approach which optimizes risk ranking. A regression based SVM
model can be explored in further analysis for potential better
survival time prediction [27]. We found some parallels with
Nemati et al. who employed real world data to predict hospital
discharge for COVID-19 patients [17] and Senders et al. who
employed 20821 glioblastoma patients originating in SEER
database to predict survival at 1 year following diagnosis. Both
employed c-index as a performance metric and focused on risk
factor analysis and 1 year survival classification respectively but
stopped short of comparing predicted and recorded discharge or
survival time as c-index is solely based on ranking of times of
events in all possible pairs [16,17]. To enhance clinical
applicability, it was important to us to compare the predicted
survival time to actual survival time and we employed log rank
test to accomplish this using uncensored data. Further analysis
alternatives could include using alternate weighting methods to
include censored data and comparison with accelerated failure
time (AFT) algorithms [16,19,37].

Similar to other studies employing large scale retrospective
data, the current study is limited by lack of information with
respect to patient performance status, molecular features and the
detailed timing of chemotherapy administration in relationship to
diagnosis and RT administration, all currently not being
collected as part of the BC Cancer registry. Additional
limitations are posed by the lack of vital status information for
some patients and the possibility that abrupt events not directly
related to patient characteristics, histology or management that
may have affected outcome. Whilst we do have information on
the intention to have administered RT or chemotherapy, the
current analysis does not take into account whether the treatment
was in fact ultimately administered or completed as intended.

Ultimately both ML methods achieved good predictive
ability on par with the gold standard (CPH) in a large dataset but
similarly to other studies [16,17], they did not outperform the
CPH statistical model acknowledging that in the context of
additional highly complex interacting features (radiomic, RT
dosimetry, detailed genomic and pharmaceutical data), machine
and deep learning models are likely to perform better [13-15].
The robust capture and inclusion of the above features comprise
future directions in the field of oncology.

The patient population and outcomes of our population are
similar to other large series [16, 30-33] and we determined that
management as a feature was crucial in achieving superior
predictive capability for all models. Our study is a first step
towards future investigations into the potential of involving ML
models in personalized treatment planning where model
predicted survival times for different treatment options can be
take into consideration when determining the optimal
management plan for each patient especially in cases such as
glioma management, where the intricacies of administration of
chemotherapy can be a source of clinical debate (concurrent
versus sequential, number of cycles and patient selection). The
fact that these aspects of management are often incompletely
captured and hence often used as a dichotomy chemotherapy
(yes/no) should be remedied. Future studies are required to
address the issue of how ML encapsulates the a priori
complexity of clinical decision making and the implications for
patient outcomes juxtaposed with the ability to create clinically
meaningful ML models that appropriately disentangle the
multiple factors involved.

Our efforts in this study highlight both the need to create
reliable clinician/ML connections as much as the need for
increasingly robust datasets that capture the intricacies of patient
management in large scale registries. This means more clinical
oversight of data coding in registries as well as quality assurance
of patient management as is now increasingly performed via
peer review in tertiary care institutions. The ability to work from
a platform of consensus will allow for meaningful conclusions
based on ML eventually on par with those currently obtained
from prospective trials. Ongoing efforts and future directions
involve in depth survival modeling aimed specifically at the
management and outcomes of elderly patients with a glioma
diagnosis as well as that of patients with lower grade gliomas
and incorporation of large-scale systemic management data into
existing models.

Materials and Methods: We employed three approaches: Cox
Proportional hazards (CPH) model, Support Vector Machine
(SVM) model, Random Forest (RF) model in a large glioma
dataset (3462 patients, diagnosed 2000-2018) originating in the
BC Cancer Registry to explore the most optimal approach to
survival prediction. Training and testing datasets were created
using random sampling in a 7:3 ratio with no statistically
significant difference in survival between the training and testing
sets. Featured employed were age, sex, surgical resection, tumor
histology and tumor site, administration of radiation therapy
(RT) and chemotherapy. Concordance index (c-index) (CI) was
employed to compare the ranking of survival time recorded in
clinical dataset to the ranking of predicted risk for death and
adjusted for right censoring using risk score predicted by each
model training different combinations of features where: 1) Age,
2) Sex, 3) Tumor Histology, 4) Tumor site, 5) Tumor resection,
6) RT, 7) Chemotherapy.

Results: 2113 (61%) of patients were male and 1349 (39%)
female. Histological distribution was glioblastoma 1555 (45%),
astrocytoma 926 (27%), oligodendroglioma 299 (9%), mixed
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glioma 267 (8%), anaplastic oligodendroglioma 130 (4%),
glioma malignant 118 (3%), anaplastic astrocytoma 70 (2%),
other glioma histologies (2%). 2410 (70%) had maximal safe
surgical resection, 1052 (30%) had biopsy only. 2730 (79%)
total patients received RT. 1631 (48%) overall received
chemotherapy (1515 (44%) immediately following diagnosis, 81
(2%) subsequent chemotherapy, 35 (1%) both initial and
subsequent). There was no statistically significant difference
between the recorded and predicted median survival time
distribution using the CPH and RF models for the test dataset, p
= (.07 and p = 0.61 respectively. The difference between SVM
predicted median survival distribution was statistically
significant from the recorded survival time, p<0.005. All three
models performed well with prediction accuracy highest (CI

Table 1. Characteristics of training and testing sets.

0.757, 0.767, 0.771 for RF, CPH, SVM models respectively)
when taking incorporating RT and chemotherapy administration
features.

5. Conclusions

We achieved superior survival prediction performance with
the aforementioned ML studies as compared to other ML and
non-ML approaches in the literature while employing
exclusively widely available clinical sets of features. The
administration of chemotherapy and RT emerged as key features
raising questions as to the potential for superior results that may
be achieved through further optimization and clinical oversight
of large-scale real world datasets to allow for clinically relevant
results to be generated by ML approaches.

Training Set (n=2423) Test Set (n=1039) Total (n=3462)
ﬂe (SD) 15 15 15
Sex Male 1483 (61.2%) 630 (60.6%) 2113 (61.0%)
Female 940 (38.8%) 409 (39.4%) 1349 (39.0%)
Histology Glioblastoma, NOS 1085 (44.8%) 470 (45.2%) 1555 (44.9%)
Astrocytoma, NOS 636 (26.2%) 290 (27.9%) 926 (26.7%)
Oligodendroglioma, NOS 220 (9.1%) 79 (7.6%) 299 (8.6%)
Mixed Glioma 185 (7.6%) 82 (7.9%) 267 (7.7%)
Anaplastic Oligodendroglioma | 98 (4.0% 32 (3.1%) 130 (3.8%)
Glioma, malignant 86 (3.5%) 32 (3.1%) 118 (3.4%)
Anaplastic astrocytoma 47 (1.9%) 23 (2.2%) 70 (2.0%)
Giant cell glioblastoma 19 (0.8%) 11 (1.1%) 30 (0.9%)
Gliosarcoma 20 (0.8%) 7 (0.7%) 27 (0.8%)
Pilocytic Astrocytoma 16 (0.7%) 8 (0.8%) 24 (0.7%)
Fibrillary astrocytoma 11 (0.5%) 5(0.5%) 16 (0.5%)
Site Frontal lobe 781 (32.2%) 338 (32.5%) 1119 (32.3%)
Temporal lobe 558 (23.0%) 237 (22.8%) 795 (23.0%)
Brain, overlapping lesion 408 (16.8%) 187 (18.0%) 595 (17.2%)
Parietal lobe 372 (15.4%) 140 (13.5%) 512 (14.8%)
Occipital lobe 70 (2.9%) 47 (4.5%) 117 (3.4%)
Brain, unspecified 90 (3.7%) 28 (2.7%) 118 (3.4%)
Cerebrum 69 (2.8%) 25 (2.4%) 94 (2.7%)
Brain stem 38 (1.6%) 16 (1.5%) 54 (1.6%)
Spinal cord 13 (0.5%) 10 (1.0%) 23 (0.7%)
Cerebellum, NOS 17 (0.7%) 7 (0.7%) 24 (0.7%)
Ventricle, NOS 7 (0.3%) 4 (0.4%) 11 (0.3%)
Surgery Surgical Resection 1666 (68.8%) 744 (71.6%) 2410 (69.6%)
No Surgical Resection 757 (31.2%) 295 (28.4%) 1052 (30.4%)
Radiation Radiation Therapy 1906 (78.7%) 814 (78.3%) 2730 (78.6%)
No Radiation Therapy 517 (21.3%) 225 (21.7%) 742 (21.4%)
Chemotherapy | No Chemotherapy 1274 (52.6%) 557 (53.6%) 1831 (52.9%)
Concurrent Chemotherapy 1072 (44.2%) 443 (42.6%) 1515 (43.8%)
Subsequent Chemotherapy 53 (2.2%) 28 (2.7%) 81 (2.3%)
Initial and Subsequent | 24 (1.0%) 11 (1.1%) 35 (1.0%)
Chemotherapy

Table 2. Predictive value of each variable under Cox
Proportional hazards (CPH) model. The predictive value of
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each variable is the concordance index of the test dataset using
predictions made by the model containing only this variable.

Variable Predictive value
|Patient characteristic

Age 0.69

Sex 0.50
Chemotherapy 0.63

[Radiation Therapy 0.60

Surgical resection 0.57

Tumor Histology 0.60

Tumor Site 0.55

List of Abbreviations

CPH - Cox Proportional Hazards Model

SVM - Support Vector Machine Model

RF - Random Forest Model

BC - British Columbia

RT- Radiation Therapy

KPS - Karnofsky Performace Status

DNET- Dysembryoplastic neuroepithelial tumors
KM - Kaplan Meier

Table 3. Most important features as identified in the Random
Forest (RF) model. The feature importance score of each feature
is shown as calculated by the decrease in the concordance index
of the test dataset predicted by RF model if this feature were not
available. Features with feature importance score less than 0.001
and Histology/Site features applying only to relatively small
portions of the data are not shown.

Feature Feature Importance Score
Age 0.080
Chemotherapy 0.031
Radiation therapy 0.020
Histology = Glioblastoma 10.020
Histology =

Oligodendroglioma 0.011
Histology = Astrocytoma  10.010
Surgical Resection 0.006
Tumor site =

Frontal lobe 0.003
Tumor site=

Temporal lobe 0.001

1.01 —— training
test
084 |
|
061 |
0.4 \
0.2 \
—————
00 = T T T T T
0 50 100 150 200 2

Figure 1. Kaplan Meier overall survival for the training and
testing datasets.
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Concordance Index for training and test data set
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Figure 2. Survival prediction accuracy of each model for
training and test dataset.

The difference in c-index between training and test dataset
is minimal across all models, suggesting that no overfitting of
the training data. The model predictions were generalizable to
the unused test data. Cox = Cox Proportional hazards (CPH)
model. SVM = Support Vector Machine (SVM) model, RF =
Random Forest (RF) model.
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Figure 3. Survival prediction accuracy of each model using
different combinations of features where: 1) Age, 2) Sex, 3)
Tumor Histology, 4) Tumor site, 5) Tumor resection, 6)
Radiation therapy (RT), 7) Chemotherapy. CPH Cox
Proportional hazards model. SVM = Support Vector Machine
(SVM) model, RF = Random Forest (RF) model.
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Figure 4. Predicted survival curves for three patients in the test dataset using A. CPH model. B. SVM model. C. RF model
respectively. CorrespondingKM survival curves for recorded survival times in test dataset and KM survival curve for predicted
median survival times using D. CPH model. E. SVM model. F. RF model. CPH = Cox Proportional hazards model. SVM = Support

Vector Machine (SVM) model, RF = Random Forest (RF) model.
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