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Abstract
Post-surgical care generates large volumes of heterogeneous data, but most health information systems rely on sparse 

measurements collected at scheduled intervals. As a result, early deviations in recovery trajectories are often difficult to detect. 
Here, a data analytics framework is described for analyzing longitudinal post-surgical data, using total knee arthroplasty (TKA) as 
a representative use case.

Systematically gathered electronic health record data, patient-reported outcomes, and activity assessments were utilized to 
delineate recovery trajectories and ascertain deviations correlated with unfavorable outcomes.Interpretable machine learning 
models were trained and evaluated on prospectively collected data from 1,000 patients to estimate the probability of outcome events 
based on temporal patterns observed across multiple data streams.

The model exhibiting the highest efficacy attained an area under the receiver operating characteristic curve quantified at 
0.896, demonstrating consistent performance across various validation folds. An examination of the model’s features revealed 
that longitudinal alterations had a more significant impact on predictive efficacy compared to discrete measurements, thereby 
highlighting the importance of temporal modeling.

The results of this research indicate that longitudinal datasets can be utilized to enhance scalable risk stratification in intricate 
healthcare data infrastructures. The suggested framework operates as a data-processing intermediary designed to facilitate human 
evaluation instead of automating the decision-making process.
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Introduction
Large-scale healthcare systems are progressively depending 

on data-driven methodologies to oversee patient outcomes and 
judiciously allocate operational resources. Nevertheless, the domain 
of post-surgical recovery continues to be one where patient data 
are insufficiently utilized. Even though electronic health records, 
patient-reported outcomes, and wearable devices yield continuous 
flows of information, most post-operative monitoring protocols 
depend on manual examination of infrequent measurements 
obtained during scheduled appointments.This means there is 
much more data available than what current systems analyze.

Total knee arthroplasty (TKA) serves as a representative data-
rich post-event monitoring scenario for evaluating longitudinal 
analytics methods. While most patients recover without incident, 
a subset experience adverse outcome patterns observed in post-
event recovery data. In many cases, problems are preceded by 

small but consistent changes in recovery data that are difficult to 
identify through manual inspection of individual variables.

From a data system’s point of view, post-surgical monitoring is 
difficult for several reasons. Patient information exists in various 
models and is disseminated across multiple platforms, often 
lacking comprehensive data. Second, meaningful signals are often 
embedded in trends rather than absolute values. Third, System 
outputs must be easy to understand and fit into existing health IT 
workflows. Prior computational approaches have largely focused 
on pre-operative risk prediction or retrospective outcome analysis, 
offering limited support for real-time or near-real-time post-
operative monitoring.

In this work, we address these challenges by framing post-
surgical monitoring as a longitudinal data analysis problem. 
We propose a machine learning–based framework that models 
expected recovery trajectories using routinely collected patient 
data and flags deviations that may warrant further review. The 
system emphasizes interpretability, temporal feature engineering, 
and workflow compatibility rather than automation of domain-
specific decisions.

The contributions of this paper are as follows:
• We define post-surgical recovery monitoring as a longitudinal 

patient data analytics problem.
• We design and evaluate interpretable machine learning models 

that operate on temporal trends rather than static measurements.
• We demonstrate how risk stratification outputs can be 

integrated into operational data systems to prioritize records for 
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human-in-the-loop review.
• We provide empirical evidence, using prospectively collected data, that trajectory-based features significantly improve predictive 

performance.
While this study focuses on TKA as a representative use case, the proposed framework is applicable to a broader class of post-event 

monitoring problems in healthcare and other domains, where outcomes are preceded by gradual deviations in multivariate temporal data. 

Methods
A. Study Design and Setting
Design: Prospective data collection followed by analytics development
Setting: Single academic medical center providing structured longitudinal patient data streams
Study Period: January 2022 - December 2024
Ethical Approval: Institutional review for secondary use of operational health data for analytics research (Protocol #2021-TKA-

ML-001). All participants consented to the secondary use of their data for analytics research.
B. Patient Population
Records were included if they corresponded to patients aged ≥50 years undergoing primary TKA with sufficient longitudinal data 

coverage. Records were excluded if they involved revision procedures, bilateral simultaneous procedures, pre-existing outcome-related 
events at baseline, severe cognitive impairment, or insufficient temporal completeness.

C. Data Collection

Baseline Data 

Timepoint Measurements Collection Method
Day 0-3 (Inpatient) Structured symptom scores, mobility metrics, vital signs, and laborato-

ry measurements
EHR extraction

Day 3-14 (Early Recovery) Pain, ROM, temperature, wound status Structured electronic data capture
Day 14-42 (Mid-term) Pain, ROM, CRP, activity metrics derived from wearable data Clinic visits + wearables
Week 6+ Pain, ROM, functional scores (KOOS) Clinic visits

D. Feature Engineering
From raw data, we engineered 34 features spanning 

demographics, surgical characteristics, early post-event 
measurements, and temporal trend features. Trend and derived 
features captured change over time, recovery plateaus, and 
unexpected reversals, providing compact representations of 
longitudinal recovery behavior suitable for large-scale processing.

E. Machine Learning Models
Model Selection: We compared three interpretable algorithms:
1. Logistic Regression: Linear baseline with L2 regularization
2. Random Forest: Ensemble of 100 decision trees, max depth 

10
3. Gradient Boosting: Sequential tree ensemble, 100 estimators, 

learning rate 0.1
Rationale: All three models provide feature importance 

metrics (coefficients or SHAP values) This makes the model 
easier to understand for users without ML expertise. Model 
selection prioritized interpretability, computational efficiency, 
and robustness to missing data, which are important in real-world 
health data systems and often more practical than complex models 
from more complex deep learning architectures. to support 
deployment within enterprise health IT systems.

Training Procedure: - Data split: 80% training (n=800), 20% test 
(n=200), stratified by outcome - Feature scaling: StandardScaler 
applied to continuous variables - Class balancing: Class weights 

adjusted to account for imbalanced outcomes - Hyperparameter 
tuning: Grid search with 5-fold cross-validation on training set 
- Model selection: Gradient boosting selected based on highest 
cross-validation AUC

Model Output: - Primary: Probability of any complication 
within 4 weeks of Day 14 assessment (range 0.0-1.0) - Secondary: 
SHAP values explaining contribution of each feature to individual 
predictions

Risk Thresholds: - Low risk: <0.15 (no change in monitoring 
priority) - Moderate risk: 0.15-0.40 (Flag generated for prioritized 
data review within operational monitoring systems) - High 
risk: >0.40 (priority alert for High-priority analytical flag for 
downstream review)

Note: Thresholds selected to achieve ~85% sensitivity while 
maintaining manageable alert rate (<15% of patients).

F. Statistical Analysis
Model Performance Metrics: - Area under ROC curve (AUC) 

with 95% CI (1000 bootstrap iterations) - Sensitivity, specificity, 
positive predictive value (PPV), negative predictive value (NPV) 
- Precision-recall curve and average precision - Confusion matrix

Clinical Utility Analysis: - Risk stratification distribution - 
Alert rate per assessment cycle - Comparison of complication rates 
across risk strata

Software: Python 3.10, scikit-learn 1.3.0, pandas 2.0.0, matplotlib 
3.7.0
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Results
     A. Patient’s Data Profile

From January 2022 to December 2024, multiple people completed the study. Here’s a quick rundown of the basic stuff about them.
Patient Demographics and Baseline Characteristics

Characteristic Overall (N=1000) No Complication (n=865) Complication (n=135) p-value
Age (years), mean ± SD 67.6 ± 7.7 67.6 ± 7.8 68.0 ± 6.7 0.58

Sex, n (%)
Male 383 (38.3) 331 (38.3) 52 (38.5) 0.96
Female 617 (61.7) 534 (61.7) 83 (61.5)
BMI (kg/m²), mean ± SD 29.1 ± 4.8 29.1 ± 4.8 28.9 ± 5.0 0.65
Comorbidities, n (%)

Diabetes 283 (28.3) 245 (28.3) 38 (28.1) 0.96
Hypertension 483 (48.3) 415 (48.0) 68 (50.4) 0.62
Chronic Kidney Disease 146 (14.6) 124 (14.3) 22 (16.3) 0.56
Current Smoker 198 (19.8) 172 (19.9) 26 (19.3) 0.87
Implant Type, n (%)
Cruciate Retaining 592 (59.2) 508 (58.7) 84 (62.2) 0.45
Posterior-Stabilized 362 (36.2) 314 (36.3) 48 (35.6)
Constrained 46 (4.6) 43 (5.0) 3 (2.2)
Operative Time (min), mean 
± SD

89.7 ± 20.1 89.7 ± 20.1 89.8 ± 20.0 0.96

Blood Loss (mL), mean ± SD 202.0 ± 80.5 201.9 ± 80.4 202.8 ± 81.9 0.91

Key Findings: - No significant baseline differences between complication and no-complication groups,

B. Model Performance
Gradient boosting was selected based on its balance of sensitivity and specificity (AUC 0.896), with stable performance across validation 

folds
Patient Cohort Characteristics

                                                                                         Patient Cohort Characteristics
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Shows the distribution of patient demographics, comorbidities, and complication types
C. Recovery Trajectories
The divergent recovery patterns between patients who developed complications versus those with uncomplicated recovery.
Post Operative Recovery Trajectories by complication status

Key observation: Records with poor outcomes show clear changes in their recovery trendsrather than single abnormal values. This 
confirms the value of trend-based features.

D. Machine Learning Model Performance
Three models were trained and compared. below graph present performance metrics.
Model Performance
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E. Data correlations
Examines associations between clinical parameters and complications.
Data correlations

Key observation: Elevated markers above learned thresholds are strongly associated with adverse outcomes. ROM <90° at 6 weeks 
highly predictive of stiffness, Persistent pain (>5/10) at 6 weeks warrants investigation. Obesity and advanced age increase risk but 
effect modest

F. Data Analytics System Output and Workflow Integration
Demonstrates the system’s output in clinical data analysis scenarios.
Decision support for human-in-the-loop review, not automation
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Discussion
A. Principal Findings
This study demonstrates that interpretable machine learning 

models applied to longitudinal post-event data can identify 
elevated risk patterns with high discrimination. Temporal features 
contributed more than single measurements, with Day 14 emerging 
as an effective assessment point for early risk stratification while 
maintaining manageable alert rates.

B. Comparison of Existing Literature
Pre-operative Risk Models: Prior studies focused on pre-

operative prediction (e.g., Ramkumar et al. [3], AUC 0.68-0.75). 
Our post-operative model achieves superior discrimination (AUC 
0.90) by incorporating recovery trajectory data unavailable pre-
operatively.

Administrative Data Models: Models using ICD codes and 
billing data (e.g., Harris et al. [16], AUC 0.72) lack data granularity. 
Our approach using daily clinical measurements captures subtle 
early warning signs.

Single-Biomarker Approaches: Studies using CRP alone 
(e.g., Parvizi et al. [17], sensitivity 70-80%) miss non-infectious 
complications. Our multimodal approach (pain, ROM, CRP, 
temperature, activity) achieves higher sensitivity (81.5%) across all 
complication types.

Deep Learning Models: Recent deep learning approaches (e.g., 
Karnuta et al. [18], AUC 0.88) achieve similar discrimination 
but lack interpretability. Our gradient boosting model provides 
clinically meaningful feature importance while maintaining 
comparable performance.

Technical Contributions of This Work:
• Longitudinal feature engineering for post-event monitoring
• Interpretable risk modeling under data sparsity
• Threshold-based prioritization with bounded alert rates
• Workflow-compatible analytics architecture
C. Analytical Implications
1. Early Detection Enables Early Intervention - Earlier 

identification of anomalous recovery trajectories enables earlier 
downstream actions, which may reduce the severity of subsequent 
adverse events.

2. Targeted Resource Allocation - Risk stratification allowed 
prioritization of a small subset of records for review while 
maintaining routine monitoring for the majority.

3. Clinician Decision Support, Not Replacement - The system 
is designed to support, rather than replace, human judgment by 
flagging records with concerning recovery patterns and providing 
interpretable feature summaries. Final decisions regarding review 
and downstream actions remain with domain experts, and alerts 
may be dismissed when deemed clinically appropriate.

D. Implementation Considerations
1. Workflow Integration
Technical Requirements: - EHR with FHIR API for data 

extraction - Secure server for model inference - Clinician 
dashboard for alert review - Patient-facing app for PRO collection 
(optional)

Workflow Steps: 
1. Automated data extraction (nightly batch or real-time) 
2. Feature engineering and model inference 
3. Alert generation if risk threshold exceeded 
4. Alert delivery to clinician inbox/dashboard 
5. Clinician review and documentation of response 
6. Feedback loop for model refinement
Estimated Time Burden: - System setup: Minimal (automated) 

- Alert review: 2-3 minutes per alert - Total time per week: 10-15 
minutes for typical practice (30-50 TKA patients monitored)

Data Quality Requirements
Critical: System performance depends on data completeness 

and accuracy.
Minimum Required Data: - Pain scores (Days 3, 7, 14) - ROM 

measurements (Days 3, 7, 14) - CRP (Days 3, 7, 14) - Temperature 
(Days 7, 14)

Optional (Improves Performance): - Activity tracking (steps/
day) - Patient-reported outcomes (KOOS, WOMAC) - Additional 
inflammatory markers (ESR, WBC)

Missing Data Handling: - Model robust to 10-20% missing data 
(common in clinical practice) - If >50% features missing, alert 
suppressed with notification to clinician

 Regulatory Requirements
The system is designed to analyze patient data and highlight 

potential risks, not to make medical decisions. All alerts and 
recommendations are reviewed by humans, and the system does 
not diagnose or treat patients.

Under current guidance, the system is considered low to 
moderate risk because it only supports data review. As a result, 
it may not require full regulatory approval if basic quality and 
safety practices are followed. These include maintaining a quality 
management process, monitoring system performance after 
deployment, obtaining appropriate ethics approval, informing 
patients about data use, and conducting regular safety checks.

The system is intended to support human decision-making 
while keeping full control with healthcare professionals.

E. Limitations
1. Single-Center Study - Results may not generalize to other 

institutions with different patient populations, surgical techniques, 
or care protocols - Complication rates and risk factor distributions 
may vary - Mitigation: Multi-site validation studies planned (see 
Future Directions)

2. Prospective Validation Needed - Current study: Model 
developed and tested on retrospective data - Unknown whether 
real-time alerts will lead to improved outcomes - Risk of alert 
fatigue if false-positive rate higher in practice - Mitigation: 
Prospective implementation trial with outcome evaluation (in 
progress)

3. Model Generalizability - Trained on data from 2022-2024; 
performance may degrade over time (model drift) - Surgical 
techniques, implants, and care protocols evolve - Mitigation: 
Annual model retraining with recent data
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4. Complication Definitions - Infection diagnosis: Some cases 
clinically diagnosed without culture confirmation (potential 
misclassification) - Stiffness: Threshold of 90° ROM somewhat 
arbitrary - Mitigation: Two independent adjudicators reviewed all 
cases; disagreements resolved by senior surgeon

5. Missing Data - 12% of patients had ≥1 missing assessment 
(primarily Day 7 data) - Patients with missing data excluded from 
analysis (potential selection bias) - Mitigation: Model designed to 
handle missing data; sensitivity analysis showed minimal impact

6. Limited Diversity - 94% of cohort White, non-Hispanic 
(regional demographics) - Model may underperform in more 
diverse populations - Mitigation: Deliberate enrollment of diverse 
cohort in expansion studies

7. Cost-Effectiveness Unknown - Study did not assess economic 
impact - Unclear whether earlier detection translates to cost 
savings - Future Work: Health economics analysis planned

F. Future Directions
Short-Term (1-2 Years): 1. Prospective Implementation Trial - 

Randomized controlled trial: AI-assisted monitoring vs. standard 
care - Primary outcome: Time to complication detection - 
Secondary outcomes: Complication severity, revision surgery rate, 
patient satisfaction

2. Multi-Site Validation
• Validate model at 3-5 external institutions
• Assess generalizability across different patient populations and 

care settings
• Refine model with multi-site data
3. Alert Optimization
• Refine risk thresholds based on clinician feedback
• Develop tiered alert system (informational, moderate priority, 

urgent)
• Implement alert fatigue mitigation strategies
Medium-Term (3-5 Years): 1. Extended Monitoring - Expand 

model to predict long-term complications (6 months - 2 years) 
- Incorporate imaging data (radiograph analysis for loosening 
detection) - Develop patient-facing risk communication tools

2. Integration with Wearables
• Continuous activity and vital sign monitoring
• Real-time risk assessment (daily instead of weekly)
• Early warning system for acute events (DVT, PE)
3. Personalized Rehabilitation
• Use predicted recovery trajectory to tailor PT protocols
• Intensify therapy for patients at risk of stiffness
• Optimize pain management based on predicted pain trajectory
Long-Term (5+ Years): 1. Federated Learning - Train models 

across multiple institutions without data sharing - Improve 
generalizability while preserving privacy - Enable rare complication 
prediction (larger effective sample size)

2. Causal Inference
• Move beyond prediction to understanding mechanisms

• Identify modifiable risk factors for targeted interventions
• Support clinical trial design for complication prevention 

strategies
3. Extension to Other Procedures
• Apply framework to hip arthroplasty, spinal fusion, etc.
• Develop procedure-specific models with shared architecture
• Create generalizable post-operative monitoring platform

Conclusions
Longitudinal analysis of post-surgical data using interpretable 

machine learning models enabled effective stratification of 
recovery-related risk patterns in this study. Using routinely 
collected data, elevated risk patterns were identified with high 
discrimination (AUC 0.896), supported primarily by trend-based 
features derived from multimodal inputs, including pain, range 
of motion, inflammatory markers, and activity measures. These 
patterns were observed up to one to two weeks before clinical 
recognition of adverse events.

The resulting risk stratification supported prioritization of a 
limited subset of records for review while maintaining routine 
monitoring for the majority. Model explanations provided 
transparent summaries of contributing features, supporting 
practical interpretation and use within existing operational 
workflows. Importantly, the system was designed to assist human 
judgment rather than automate diagnostic or therapeutic decisions.

Earlier identification of anomalous recovery trajectories may 
enable more timely downstream review and response, with the 
potential to reduce complication severity and associated resource 
utilization. Prospective validation is required to determine the 
impact of such monitoring on clinical outcomes and operational 
efficiency.

With additional validation and refinement, this framework 
may generalize to other post-event monitoring scenarios where 
outcomes are preceded by gradual deviations in longitudinal data. 
More broadly, the results illustrate how interpretable machine 
learning applied to real-world temporal data can support risk 
prioritization while preserving transparency and human oversight.
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