Sciforce
Journal of Artificial Intelligence and Machine Learning

Journal homepage: www.sciforce.org
ISSN : 2995-2336

Open Access Research Article

Al-Based Analysis of Post-Surgical Patient Data for Risk Stratification
After Total Knee Arthroplasty

Naidu Paila*

Business Systems Lead Analyst, Zimmer Biomet, USA

Abstract

Post-surgical care generates large volumes of heterogeneous data, but most health information systems rely on sparse
measurements collected at scheduled intervals. As a result, early deviations in recovery trajectories are often difficult to detect.
Here, a data analytics framework is described for analyzing longitudinal post-surgical data, using total knee arthroplasty (TKA) as
a representative use case.

Systematically gathered electronic health record data, patient-reported outcomes, and activity assessments were utilized to
delineate recovery trajectories and ascertain deviations correlated with unfavorable outcomes.Interpretable machine learning
models were trained and evaluated on prospectively collected data from 1,000 patients to estimate the probability of outcome events
based on temporal patterns observed across multiple data streams.

The model exhibiting the highest efficacy attained an area under the receiver operating characteristic curve quantified at
0.896, demonstrating consistent performance across various validation folds. An examination of the model’s features revealed
that longitudinal alterations had a more significant impact on predictive efficacy compared to discrete measurements, thereby
highlighting the importance of temporal modeling.

The results of this research indicate that longitudinal datasets can be utilized to enhance scalable risk stratification in intricate
healthcare data infrastructures. The suggested framework operates as a data-processing intermediary designed to facilitate human

evaluation instead of automating the decision-making process.

Introduction

Large-scale healthcare systems are progressively depending
on data-driven methodologies to oversee patient outcomes and
judiciously allocate operational resources. Nevertheless, the domain
of post-surgical recovery continues to be one where patient data
are insufficiently utilized. Even though electronic health records,
patient-reported outcomes, and wearable devices yield continuous
flows of information, most post-operative monitoring protocols
depend on manual examination of infrequent measurements
obtained during scheduled appointments.This means there is
much more data available than what current systems analyze.

Total knee arthroplasty (TKA) serves as a representative data-
rich post-event monitoring scenario for evaluating longitudinal
analytics methods. While most patients recover without incident,
a subset experience adverse outcome patterns observed in post-
event recovery data. In many cases, problems are preceded by
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small but consistent changes in recovery data that are difficult to
identify through manual inspection of individual variables.

From a data system’s point of view, post-surgical monitoring is
difficult for several reasons. Patient information exists in various
models and is disseminated across multiple platforms, often
lacking comprehensive data. Second, meaningful signals are often
embedded in trends rather than absolute values. Third, System
outputs must be easy to understand and fit into existing health IT
workflows. Prior computational approaches have largely focused
on pre-operative risk prediction or retrospective outcome analysis,
offering limited support for real-time or near-real-time post-
operative monitoring.

In this work, we address these challenges by framing post-
surgical monitoring as a longitudinal data analysis problem.
We propose a machine learning-based framework that models
expected recovery trajectories using routinely collected patient
data and flags deviations that may warrant further review. The
system emphasizes interpretability, temporal feature engineering,
and workflow compatibility rather than automation of domain-
specific decisions.

The contributions of this paper are as follows:

« We define post-surgical recovery monitoring as a longitudinal
patient data analytics problem.

« We design and evaluate interpretable machine learning models
that operate on temporal trends rather than static measurements.

« We demonstrate how risk stratification outputs can be
integrated into operational data systems to prioritize records for
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human-in-the-loop review.
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o We provide empirical evidence, using prospectively collected data, that trajectory-based features significantly improve predictive

performance.

While this study focuses on TKA as a representative use case, the proposed framework is applicable to a broader class of post-event
monitoring problems in healthcare and other domains, where outcomes are preceded by gradual deviations in multivariate temporal data.

Methods
A. Study Design and Setting

Design: Prospective data collection followed by analytics development

Setting: Single academic medical center providing structured longitudinal patient data streams

Study Period: January 2022 - December 2024

Ethical Approval: Institutional review for secondary use of operational health data for analytics research (Protocol #2021-TKA-
ML-001). All participants consented to the secondary use of their data for analytics research.

B. Patient Population

Records were included if they corresponded to patients aged 250 years undergoing primary TKA with sufficient longitudinal data
coverage. Records were excluded if they involved revision procedures, bilateral simultaneous procedures, pre-existing outcome-related
events at baseline, severe cognitive impairment, or insufficient temporal completeness.

C. Data Collection

Baseline Data

Timepoint Measurements

Collection Method

Day 0-3 (Inpatient)
ry measurements

Structured symptom scores, mobility metrics, vital signs, and laborato-

EHR extraction

Day 3-14 (Early Recovery) | Pain, ROM, temperature, wound status

Structured electronic data capture

Day 14-42 (Mid-term)

Pain, ROM, CRP, activity metrics derived from wearable data

Clinic visits + wearables

Week 6+

Pain, ROM, functional scores (KOOS)

Clinic visits

D. Feature Engineering

From raw data, we engineered 34 features spanning
demographics, surgical characteristics, early post-event
measurements, and temporal trend features. Trend and derived
features captured change over time, recovery plateaus, and
unexpected reversals, providing compact representations of
longitudinal recovery behavior suitable for large-scale processing.

E. Machine Learning Models
Model Selection: We compared three interpretable algorithms:
1. Logistic Regression: Linear baseline with L2 regularization

2. Random Forest: Ensemble of 100 decision trees, max depth
10

3. Gradient Boosting: Sequential tree ensemble, 100 estimators,
learning rate 0.1

Rationale: All three models provide feature importance
metrics (coefficients or SHAP values) This makes the model
easier to understand for users without ML expertise. Model
selection prioritized interpretability, computational efliciency,
and robustness to missing data, which are important in real-world
health data systems and often more practical than complex models
from more complex deep learning architectures. to support
deployment within enterprise health IT systems.

Training Procedure: - Data split: 80% training (n=800), 20% test
(n=200), stratified by outcome - Feature scaling: StandardScaler
applied to continuous variables - Class balancing: Class weights

adjusted to account for imbalanced outcomes - Hyperparameter
tuning: Grid search with 5-fold cross-validation on training set
- Model selection: Gradient boosting selected based on highest
cross-validation AUC

Model Output: - Primary: Probability of any complication
within 4 weeks of Day 14 assessment (range 0.0-1.0) - Secondary:
SHAP values explaining contribution of each feature to individual
predictions

Risk Thresholds: - Low risk: <0.15 (no change in monitoring
priority) - Moderate risk: 0.15-0.40 (Flag generated for prioritized
data review within operational monitoring systems) - High
risk: >0.40 (priority alert for High-priority analytical flag for
downstream review)

Note: Thresholds selected to achieve ~85% sensitivity while
maintaining manageable alert rate (<15% of patients).

F. Statistical Analysis

Model Performance Metrics: - Area under ROC curve (AUC)
with 95% CI (1000 bootstrap iterations) - Sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV)
- Precision-recall curve and average precision - Confusion matrix

Clinical Utility Analysis: - Risk stratification distribution -
Alert rate per assessment cycle - Comparison of complication rates
across risk strata

Software: Python 3.10, scikit-learn 1.3.0, pandas 2.0.0, matplotlib
3.7.0
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Results
A. Patient’s Data Profile
From January 2022 to December 2024, multiple people completed the study. Here’s a quick rundown of the basic stuff about them.

Patient Demographics and Baseline Characteristics

Characteristic Overall (N=1000) No Complication (n=865) Complication (n=135) p-value
Age (years), mean + SD 67.6+7.7 67.6+7.8 68.0+6.7 0.58
Sex, n (%)

Male 383 (38.3) 331 (38.3) 52 (38.5) 0.96
Female 617 (61.7) 534 (61.7) 83 (61.5)

BMI (kg/mz), mean + SD 29.1+4.8 29.1+4.8 289+5.0 0.65
Comorbidities, n (%)

Diabetes 283 (28.3) 245 (28.3) 38 (28.1) 0.96
Hypertension 483 (48.3) 415 (48.0) 68 (50.4) 0.62
Chronic Kidney Disease 146 (14.6) 124 (14.3) 22 (16.3) 0.56
Current Smoker 198 (19.8) 172 (19.9) 26 (19.3) 0.87
Implant Type, n (%)

Cruciate Retaining 592 (59.2) 508 (58.7) 84 (62.2) 0.45
Posterior-Stabilized 362 (36.2) 314 (36.3) 48 (35.6)

Constrained 46 (4.6) 43 (5.0) 3(2.2)

Operative Time (min), mean | 89.7 +20.1 89.7 +20.1 89.8 +20.0 0.96
+ SD

Blood Loss (mL), mean + SD | 202.0 + 80.5 201.9 + 80.4 202.8 + 81.9 0.91

Key Findings: - No significant baseline differences between complication and no-complication groups,
B. Model Performance

Gradient boosting was selected based on its balance of sensitivity and specificity (AUC 0.896), with stable performance across validation
folds

Patient Cohort Characteristics
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Shows the distribution of patient demographics, comorbidities, and complication types
C. Recovery Trajectories
The divergent recovery patterns between patients who developed complications versus those with uncomplicated recovery.

Post Operative Recovery Trajectories by complication status

A. Pain Trajectory B. Range of Motion Trajectory C. C-Reactive Protein Trajectory
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Key observation: Records with poor outcomes show clear changes in their recovery trendsrather than single abnormal values. This
confirms the value of trend-based features.

D. Machine Learning Model Performance

Three models were trained and compared. below graph present performance metrics.

A. ROC Curves B. Precision-Recall Curves C. 5-Fold Cross-Validation
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E. Data correlations

Examines associations between clinical parameters and complications.

Data correlations
A. CRP by Complication Status B. ROM by Complication Status C. Pain by Complication Status
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Key observation: Elevated markers above learned thresholds are strongly associated with adverse outcomes. ROM <90° at 6 weeks

hfifghly predictive of stiffness, Persistent pain (>5/10) at 6 weeks warrants investigation. Obesity and advanced age increase risk but
effect modest

F. Data Analytics System Output and Workflow Integration
Demonstrates the system’s output in clinical data analysis scenarios.

Decision support for human-in-the-loop review, not automation
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Discussion
A. Principal Findings

This study demonstrates that interpretable machine learning
models applied to longitudinal post-event data can identify
elevated risk patterns with high discrimination. Temporal features
contributed more than single measurements, with Day 14 emerging
as an effective assessment point for early risk stratification while
maintaining manageable alert rates.

B. Comparison of Existing Literature

Pre-operative Risk Models: Prior studies focused on pre-
operative prediction (e.g., Ramkumar et al. [3], AUC 0.68-0.75).
Our post-operative model achieves superior discrimination (AUC
0.90) by incorporating recovery trajectory data unavailable pre-
operatively.

Administrative Data Models: Models using ICD codes and
billing data (e.g., Harris et al. [16], AUC 0.72) lack data granularity.
Our approach using daily clinical measurements captures subtle
early warning signs.

Single-Biomarker Approaches: Studies using CRP alone
(e.g., Parvizi et al. [17], sensitivity 70-80%) miss non-infectious
complications. Our multimodal approach (pain, ROM, CRP,
temperature, activity) achieves higher sensitivity (81.5%) across all
complication types.

Deep Learning Models: Recent deep learning approaches (e.g.,
Karnuta et al. [18], AUC 0.88) achieve similar discrimination
but lack interpretability. Our gradient boosting model provides
clinically meaningful feature importance while maintaining
comparable performance.

Technical Contributions of This Work:

« Longitudinal feature engineering for post-event monitoring
« Interpretable risk modeling under data sparsity

« Threshold-based prioritization with bounded alert rates

» Workflow-compatible analytics architecture

C. Analytical Implications

1. Early Detection Enables Early Intervention - Earlier
identification of anomalous recovery trajectories enables earlier
downstream actions, which may reduce the severity of subsequent
adverse events.

2. Targeted Resource Allocation - Risk stratification allowed
prioritization of a small subset of records for review while
maintaining routine monitoring for the majority.

3. Clinician Decision Support, Not Replacement - The system
is designed to support, rather than replace, human judgment by
flagging records with concerning recovery patterns and providing
interpretable feature summaries. Final decisions regarding review
and downstream actions remain with domain experts, and alerts
may be dismissed when deemed clinically appropriate.

D. Implementation Considerations
1. Workflow Integration

Technical Requirements: - EHR with FHIR API for data
extraction - Secure server for model inference - Clinician
dashboard for alert review - Patient-facing app for PRO collection
(optional)

© Naidu Paila, et al.

Workflow Steps:

1. Automated data extraction (nightly batch or real-time)
2. Feature engineering and model inference

3. Alert generation if risk threshold exceeded

4. Alert delivery to clinician inbox/dashboard

5. Clinician review and documentation of response

6. Feedback loop for model refinement

Estimated Time Burden: - System setup: Minimal (automated)
- Alert review: 2-3 minutes per alert - Total time per week: 10-15
minutes for typical practice (30-50 TKA patients monitored)

Data Quality Requirements

Critical: System performance depends on data completeness
and accuracy.

Minimum Required Data: - Pain scores (Days 3, 7, 14) - ROM
measurements (Days 3, 7, 14) - CRP (Days 3, 7, 14) - Temperature
(Days 7, 14)

Optional (Improves Performance): - Activity tracking (steps/
day) - Patient-reported outcomes (KOOS, WOMAC) - Additional
inflammatory markers (ESR, WBC)

Missing Data Handling: - Model robust to 10-20% missing data
(common in clinical practice) - If >50% features missing, alert
suppressed with notification to clinician

Regulatory Requirements

The system is designed to analyze patient data and highlight
potential risks, not to make medical decisions. All alerts and
recommendations are reviewed by humans, and the system does
not diagnose or treat patients.

Under current guidance, the system is considered low to
moderate risk because it only supports data review. As a result,
it may not require full regulatory approval if basic quality and
safety practices are followed. These include maintaining a quality
management process, monitoring system performance after
deployment, obtaining appropriate ethics approval, informing
patients about data use, and conducting regular safety checks.

The system is intended to support human decision-making
while keeping full control with healthcare professionals.

E. Limitations

1. Single-Center Study - Results may not generalize to other
institutions with different patient populations, surgical techniques,
or care protocols - Complication rates and risk factor distributions
may vary - Mitigation: Multi-site validation studies planned (see
Future Directions)

2. Prospective Validation Needed - Current study: Model
developed and tested on retrospective data - Unknown whether
real-time alerts will lead to improved outcomes - Risk of alert
fatigue if false-positive rate higher in practice - Mitigation:
Prospective implementation trial with outcome evaluation (in
progress)

3. Model Generalizability - Trained on data from 2022-2024;
performance may degrade over time (model drift) - Surgical
techniques, implants, and care protocols evolve - Mitigation:
Annual model retraining with recent data
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4. Complication Definitions - Infection diagnosis: Some cases
clinically diagnosed without culture confirmation (potential
misclassification) - Stiffness: Threshold of 90° ROM somewhat
arbitrary - Mitigation: Two independent adjudicators reviewed all
cases; disagreements resolved by senior surgeon

5. Missing Data - 12% of patients had >1 missing assessment
(primarily Day 7 data) - Patients with missing data excluded from
analysis (potential selection bias) - Mitigation: Model designed to
handle missing data; sensitivity analysis showed minimal impact

6. Limited Diversity - 94% of cohort White, non-Hispanic
(regional demographics) - Model may underperform in more
diverse populations - Mitigation: Deliberate enrollment of diverse
cohort in expansion studies

7. Cost-Effectiveness Unknown - Study did not assess economic
impact - Unclear whether earlier detection translates to cost
savings - Future Work: Health economics analysis planned

F. Future Directions

Short-Term (1-2 Years): 1. Prospective Implementation Trial -
Randomized controlled trial: Al-assisted monitoring vs. standard
care - Primary outcome: Time to complication detection -
Secondary outcomes: Complication severity, revision surgery rate,
patient satisfaction

2. Multi-Site Validation
« Validate model at 3-5 external institutions

o Assess generalizability across different patient populations and
care settings

« Refine model with multi-site data
3. Alert Optimization
« Refine risk thresholds based on clinician feedback

« Develop tiered alert system (informational, moderate priority,
urgent)

« Implement alert fatigue mitigation strategies

Medium-Term (3-5 Years): 1. Extended Monitoring - Expand
model to predict long-term complications (6 months - 2 years)
- Incorporate imaging data (radiograph analysis for loosening
detection) - Develop patient-facing risk communication tools

2. Integration with Wearables

« Continuous activity and vital sign monitoring

« Real-time risk assessment (daily instead of weekly)

« Early warning system for acute events (DV'T, PE)

3. Personalized Rehabilitation

o Use predicted recovery trajectory to tailor PT protocols

« Intensify therapy for patients at risk of stiffness

» Optimize pain management based on predicted pain trajectory

Long-Term (5+ Years): 1. Federated Learning - Train models
across multiple institutions without data sharing - Improve
generalizability while preserving privacy - Enable rare complication
prediction (larger effective sample size)

2. Causal Inference

« Move beyond prediction to understanding mechanisms

© Naidu Paila, et al.

« Identify modifiable risk factors for targeted interventions

o Support clinical trial design for complication prevention
strategies

3. Extension to Other Procedures
« Apply framework to hip arthroplasty, spinal fusion, etc.
« Develop procedure-specific models with shared architecture

« Create generalizable post-operative monitoring platform

Conclusions

Longitudinal analysis of post-surgical data using interpretable
machine learning models enabled effective stratification of
recovery-related risk patterns in this study. Using routinely
collected data, elevated risk patterns were identified with high
discrimination (AUC 0.896), supported primarily by trend-based
features derived from multimodal inputs, including pain, range
of motion, inflammatory markers, and activity measures. These
patterns were observed up to one to two weeks before clinical
recognition of adverse events.

The resulting risk stratification supported prioritization of a
limited subset of records for review while maintaining routine
monitoring for the majority. Model explanations provided
transparent summaries of contributing features, supporting
practical interpretation and use within existing operational
workflows. Importantly, the system was designed to assist human
judgment rather than automate diagnostic or therapeutic decisions.

Earlier identification of anomalous recovery trajectories may
enable more timely downstream review and response, with the
potential to reduce complication severity and associated resource
utilization. Prospective validation is required to determine the
impact of such monitoring on clinical outcomes and operational
efficiency.

With additional validation and refinement, this framework
may generalize to other post-event monitoring scenarios where
outcomes are preceded by gradual deviations in longitudinal data.
More broadly, the results illustrate how interpretable machine
learning applied to real-world temporal data can support risk
prioritization while preserving transparency and human oversight.
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