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Abstract

An automated label identification and recommendation system using deep convolutional neural networks, understanding user
perceptions regarding the reliability, accuracy, and interpretability of the computer system is essential for developing robust and
explainable AT solutions. This study contributes to this need by exploring several performance dimensions, including accuracy,
contextual relevance, clarity, dataset qluality, sensitivity, specificity, recall rate, false positive rate, and explain ability. Using a cross-
sectional survey design, data were collected from respondents via Google Forms in November-December 2025. One-way ANOVA
and two-way ANOVA (p < 0.05) were used with IBM SPSS to explore the relationships between socio-demographic variables and
perceived performance metrics. The findings indicate consistent perceptions across experience levels and model types, while the
model output format significantly impacted label accuracy and dataset quality. The results emphasize the importance of output

and validation frameworks.

representation in improving automated labeling performance and reliability, suggesting directions for future system optimization
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Introduction

Automated labeling systems powered by deep convolutional
neural networks (CNNs) have emerged as transformative
solutions in diverse fields, from medical imaging to industrial
applications [1]. These systems address a fundamental challenge
in machine learning: the time-consuming, expensive, and often
subjective nature of manual data annotation. By leveraging the
pattern recognition capabilities of CNNs, automated labeling
systems can process vast amounts of data with a consistency and
speed unmatched by human annotators, while simultaneously
reducing costs and enabling scalability for large-scale applications
[2]. These networks learn increasingly complex features in deeper
layers. Modern approaches often utilize pre-trained models
like Res Net or DenseNet as backbone networks, which have
demonstrated superior performance in feature extraction tasks
[3]. These networks process input images through multiple
convolutional and pooling layers, automatically learning
spatial hierarchies of features without manual engineering. The
architecture often includes mechanisms that focus computational
resources on relevant image regions, improving both accuracy and
interpretability [5].Advanced systems integrate multiple detection

Received date: December 05, 2025 Accepted date: December
09 2025; Published date: December 15, 2025

*Corresponding Author: Peram, S. R., Engineering Leader,
lllumio Inc., United State; E- mail: sudhakarap2013@gmail.com

Copyright: © 2025 Peram, S. R, This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and
source are credited.

stages, combining regional proposal networks with classification
heads to simultaneously detect and classify objects. This two-
stage approach, exemplified by Faster R-CNN architectures,
has proven particularly useful for scenarios requiring accurate
localization along with classification [6]. The incorporation of
batch normalization, dropout layers, and residual connections
helps prevent overfitting while enabling the training of very deep
networks that capture the subtle discriminative features necessary
for accurate labeling.

The success of automated labeling systems depends on data
quality and preprocessing pipelines. Research has shown that
even small percentages of incorrectly labeled training data can
significantly degrade model performance [7]. The challenge of
label noise has been extensively documented in medical imaging
applications. [8] Di Noto et al. (2020) demonstrated that automated
label cleaning systems achieved 95% accuracy in pneumonia
detection through pediatric chest X-ray analysis, surpassing
previously reported models by 92% [9]. Their unsupervised data
cleaning (UDC) technique successfully identified both incorrect
labels and noisy data, where neither AI nor radiologists could
consistently classify the images, highlighting the dual challenge
of mislabeling and inherent data ambiguity. Similarly, Lin et al.
(2025) addressed label noise in retinal image datasets, with their
CleanLab-based approach improving label accuracies from a
baseline of 62.9% after six cleaning cycles, accurately correcting
most label errors (86.6-97.5%) [10]. Researchers have found that
deep convolutional neural networks perform exceptionally well in
automated detection applications. In 2018, Fang and his colleagues
developed an improved version of Faster R-CNN specifically
for monitoring construction sites. When used in real-world
environments, it achieved an accuracy of 91% in detecting workers
and 95% in detecting excavators. [11]. Their research showed
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that combining spatial degradation assessments with automated
classification systems significantly improves diagnostic capabilities
compared to traditional manual feature extraction techniques [12].

The study emphasized that even a fraction of substandard data
can significantly hinder Al performance, thus necessitating robust
data quality assessment algorithms. The integration of multiple
data modalities in automated labeling systems has emerged as a
significant advancement [13]. Cui and colleagues (2021) integrated
structural brain volume measurements from T1-weighted MRI
scans with DTI-based metrics to identify amnestic mild cognitive
impairment, yielding 71.09% accuracy, 51.96% sensitivity, and
78.40% specificity [14]. Their research, using the FreeSurfer-
initiated large deformation diffeomorphic metric mapping
(FS+LDDMM) technique, showed that combining structural brain
morphological changes with white matter alterations improves
the detection of subtle brain abnormalities compared to single-
modality imaging approaches.[15]. This study found that various
socio-demographic, lifestyle, and health variables influence
classification disorders. This highlights the need for comprehensive
feature selection strategies.[16]. Despite significant advances
in automated labeling systems, current approaches face critical
limitations [17-18]. Existing methods predominantly operate in
isolation, lacking integration of ensemble detection with multi-
modal data fusion and adaptive weak supervision mechanisms
[19] Furthermore, there is insufficient attention to real-time
recommendation systems that not only detect labels but also
suggest optimal labeling strategies based on data characteristics,
quality assessment, and domain-specific requirements. [20] The
absence of comprehensive frameworks that simultaneously address
label noise detection, quality assessment, and intelligent label
recommendation while maintaining interpretability represents a
significant gap in current research.The objective of this study is to
explore the impact of deep learning expertise on the descriptive
capabilities of automated labeling systems.

© Peram, S. R, et al.

Methodology

This research was conducted during November-December 2025
using a structured online questionnaire administered via Google
Forms. Independent variables included gender, occupation,
experience with deep learning models, application domain,
deep learning model type, and model output format (2D and
3D representations) (Table 1). Dependent variables comprised
perceived accuracy, contextual relevance, clarity, dataset quality,
uniqueness, sensitivity, false positive rate, recall, and interpretability
of alabel. Data were collected using a five-point Likert scale, and the
researchers used the ANOVA method along with other statistical
methods for the analysis.The dependent variables reflected the
respondents’ opinions on various dimensions of the deep learning
system’s performance. These included label accuracy, contextual
relevance, clarity, dataset quality, uniqueness, sensitivity, false
positive rate, recall, and interpretability. Attitudinal variables were
measured using a five-point Likert scale ranging from very poor to
very good; this recorded users’ assessments of model performance,
reliability, and comprehensibility. To maximize participant
reach, the Google Forms survey link was distributed through
digital channels including Facebook, WhatsApp, Instagram, and
LinkedIn. Respondents were informed about the survey objectives,
and participation was voluntary, anonymous, and with assured
confidentiality.

The online method facilitated convenient and cost-effective data
collection from diverse professional and demographic groups. The
automated label detection performance metric showed acceptable
internal consistency. One-way ANOVA results did not reveal
statistically significant differences in the perceived performance
metrics across different levels of deep learning experience or
various deep learning model types (Tables 3 and 5), indicating
consistent perceptions regardless of expertise or architecture. In
contrast, the analysis based on the model output format identified
statistically significant differences in label accuracy and dataset
quality between 2D and 3D patch outputs (Table 6), underscoring
the importance of output representation. Two-way ANOVA
further confirmed the absence of significant main or interaction
effects (Tables 7). All analyses were conducted using IBM SPSS
27.0 software.

Table 1. Independent Variables and Their Response Options Used in the Study

Gender

Male/Female/Others

Occupation

Industry/Academics/Scientist/R&D person/others

Experience In Deep Learning Model

below a year/1-2 year/2-4 year/4-6 year/6 year above

Domain chemical/medical/civil/mechanical/textile/pharmacy/others
ResNet/3D ResNet/CNN/RCNN/nnDetection/DeepMedic/3D UNET/ResNet/HeadXNet/2D
DL model CNN/1DCNN/SPCNet/Unet/DeepLabv3+/WLBiLSTM/CLCNN/CL+WLBIiLSTM
Model Output 2D patches/3D patches
Table 2. Socio-demographic Characteristics of Respondents Industry 98 18.2
Characteristics Frequency Percent (%) Academics 158 29.4
Gender Scientist 157 29.2
Male 191 35.6 R&D person 101 18.8
Female 279 52 others 23 4.3
Others 67 12.5 Experience In Deep Learning Model
Occupation below a year | 36 6.7
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1-2 years 125 233 RCNN 56 10.4
2-4 years 199 37.1 nnDetection 42 7.8
4-6 years 144 26.8 DeepMedic 37 6.9
6 years above 33 6.1 3D UNET 29 5.4
Domain HeadXNet 38 7.1
chemical 56 10.4 2D CNN 41 76
medical 93 17.3 1D CNN 32 6
civil 75 14 SPCNet 46 8.6
mechanical 150 27.9 UNet 29 5.4
textile 71 13.2 DeepLabv3+ 54 10.1
pharmacy 78 14.5 WLBILSTM 31 58
others 14 26 CLCNN 24 45
DL model CL+WLBIiLSTM 15 2.8

ResNet 14 26 Model Output
3D ResNet 19 35 2D patches 343 63.9
CNN 30 56 3D patches 194 36.1

Table 2 shows the socio-demographic characteristics of the survey participants; the majority of them are female participants working
in the fields of education and science. The majority of them had 2-4 years of deep learning experience and worked in the mechanical and
medical fields. CNN-based architectures were commonly used, and 2D patch outputs were preferred over 3D patches.

Study Design
Survey Method
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Sampling Frame Sample Size Outize G ;. Gkl
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Figure 1: Research Methodology Flowchart
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Table 3. One-Way ANOVA Examining Differences in Performance Metrics Across Experience Levels in Deep Learning Models

Sum of Squares df Mean Square F Sig.
Accuracy of a Label 3.684 4 0.921 0.850 0.494
Contextual Fit 2.299 4 0.575 0.413 0.799
Clarity 8.016 4 2.004 1.198 0.311
Dataset Quality 2.069 4 0.517 0.314 0.869
specificity 9.715 4 2.429 1.290 0.273
Sensitivity 1.235 4 0.309 0.180 0.949
False Positive Rate 2.391 4 0.598 0.404 0.806
Recall 3.367 4 0.842 0.534 0.711
Interpretation 8.294 4 2.074 1.167 0.324

Table 3 presents the results of an ANOVA, a method used to examine differences in various performance metrics across experience
levels in deep learning models. Since all p-values exceeded the 0.05 significance level, these results indicate that there were no statistically
significant differences in any of the measured variables between the experimental groups. Metrics such as label accuracy, contextual
relevance, clarity, dataset quality, uniqueness, sensitivity, false positive rate, recall, and interpretability remained relatively consistent
regardless of experience. These findings suggest that the level of experience in deep learning did not have a significant influence on the
performance outcomes observed or measured in this study.
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Figure 2: One-Way ANOVA Showing the Effect of Experience in Deep Learning Models on Performance Metrics

Figure 2 illustrates the one-way ANOVA results examining the effect of experience in deep learning models on various performance
metrics. The mean trends shown in the graph exhibit only minor variations across the experience levels. This visual representation
confirms the statistical findings and shows that there are no significant differences in performance metrics due to the level of experience.

Table 4. One-Way ANOVA Examining Differences in Performance Metrics Across Deep Learning Models

Sum of Squares df Mean Square F Sig.
Accuracy of a Label 19.998 15 1.333 1.241 0.237
Contextual Fit 16.648 15 1.110 0.797 0.682
Clarity 24.821 15 1.655 0.987 0.467
Dataset Quality 20.099 15 1.340 0.814 0.663
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specificity 32.754 15 2.184 1.163 0.297
Sensitivity 26.835 15 1.789 1.052 0.400
False Positive Rate 28.858 15 1.924 1.318 0.186
Recall 38.454 15 2.564 1.661 0.055
Interpretation 41.419 15 2.761 1.578 0.075

Table 4 presents the one-way ANOVA results comparing the performance metrics across different deep learning models. All evaluated
metrics did not show statistically significant differences between the models, as their p-values are greater than 0.05. This indicates that, in
this study, the model type did not significantly affect accuracy, contextual relevance, clarity, or other related performance metrics.

Table 5. One-Way ANOVA Examining Differences in Performance Metrics between Model Outputs
Sum of Squares df Mean Square F Sig.

Accuracy of a Label 40.717 1 40.717 40.429 0.000
Contextual Fit 1.577 1 1.577 1.139 0.286
Clarity 5.822 1 5.822 3.491 0.062
Dataset Quality 15.749 1 15.749 9.773 0.002
specificity 0.004 1 0.004 0.002 0.965
Sensitivity 0.100 1 0.100 0.059 0.808
False Positive Rate 0.074 1 0.074 0.050 0.822
Recall 1.048 1 1.048 0.666 0.415
Interpretation 1.639 1 1.639 0.921 0.338

Table 5 shows the one-way ANOVA results comparing performance metrics across different model outputs. Statistically significant
differences were found in label accuracy and dataset quality (p < 0.05), while no significant differences were observed between the model
outputs in contextual relevance, clarity, uniqueness, sensitivity, false positive rate, recall, and interpretability.
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Figure 3: One-Way ANOVA Illustrating Differences in Performance Metrics Across Deep Learning Models
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Figure 3 shows one-way ANOVA plots comparing performance metrics across different deep learning models. The mean values
across the models are relatively consistent, with no significant deviations. This suggests that the differences between the deep learning
architectures did not cause statistically significant variations in the evaluated performance metrics.

Table 6. Levene’s Test for Homogeneity of Error Variances for Accuracy of a Label

Levene Statistic df1 df2 Sig.
Label Accuracy Using Mean 1.234 65 455 0.116
Using Median 0.848 65 455 0.792
Using Median with adjusted degrees of freedom 0.848 65 338.13 0.788
Using Trimmed Mean 1.219 65 455 0.129

Evaluates the null hypothesis that error variance for the dependent variable is homogeneous across groups.

a Dependent variable: Label Accuracy

b Design: Intercept + Experience + Deep Learning Model + Experience * Deep Learning Model

Table 6 presents the results of Levene’s test, which assesses the homogeneity of variances for label accuracy Since all significance values
exceeded 0.05, it confirms equal variances among the data groups, thus fulfilling the variance assumption required for ANOVA analysis.
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Figure 4: One-Way ANOVA Showing the Effect of Model Output (2D vs 3D Patches) on Performance Measures

Figure 4 shows the one-way ANOVA results comparing the model outputs based on 2D and 3D patches. Significant differences are
observed in the accuracy of one label and the quality of the dataset, while other metrics show minimal variation. This indicates that the
type of model output significantly affects the chosen performance metrics.
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Table 7. Tests of Between-Subjects Effects for Accuracy of a Label

Source Type III Sum of Squares | df Mean Square | F Sig. Partial Eta Squared
Corrected Model 98.287a 76 1.293 1.236 0.101 0.171
Intercept 2104.874 1 2104.874 2011.168 |0 0.816
Experience 3.808 4 0.952 0.91 0.458 0.008
Deep Learning Model 16.547 15 1.103 1.054 0.398 0.034
Experience * Deep Learning

Model 74.751 57 1.311 1.253 0.112 0.136
Error 476.2 455 1.047

Total 5661 532

Corrected Total 574.487 531

a R Squared = .171 (Adjusted R Squared = .033)

Table 7 shows the two-way ANOVA results for label accuracylt reveals that there are no statistically significant effects from experience,
the deep learning model, or their interaction (p > 0.05). This model accounts for 17.1% of the total variance, indicating a moderate, but

not statistically significant, explanatory power.
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Based on the two-way ANOVA results, Figure 4 illustrates
how experience in deep learning and the type of deep learning
model interact to affect label accuracy. The non-parallel trends
indicate variations between the different combinations; however,
the absence of strong crossover patterns is consistent with
the statistical results showing no significant interaction effect.
According to this analysis, the socio-demographic characteristics
of the respondents, prior deep learning experience, and model
selection did not significantly affect the perceived performance
of automated labeling systems. Perceptions of performance were
consistent across all groups, while the model output format (2D
versus 3D) emerged as a key factor influencing label accuracy and
the quality of the dataset.

Conclusion

Automated label detection and recommendation system using
deep convolutional neural networks: How deep learning expertise,
model selection, and output format affect user evaluations of
automated labeling system performance. The results demonstrate
that the level of deep learning experience does not meaningfully
impact perceptions of accuracy, contextual relevance, clarity, or
interpretability, suggesting that contemporary labeling systems
provide consistent performance regardless of user expertise.
Additionally, differences between deep learning models did not
yield statistically significant differences in perceived performance
metrics, indicating comparable practical performance across
distinct architectures.Model output format emerged as a crucial
factor. Significant differences in label accuracy and dataset
quality were observed between 2D and 3D patch-based outputs,
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