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Abstract
An automated label identification and recommendation system using deep convolutional neural networks, understanding user 

perceptions regarding the reliability, accuracy, and interpretability of the computer system is essential for developing robust and 
explainable AI solutions. This study contributes to this need by exploring several performance dimensions, including accuracy, 
contextual relevance, clarity, dataset quality, sensitivity, specificity, recall rate, false positive rate, and explain ability. Using a cross-
sectional survey design, data were collected from respondents via Google Forms in November-December 2025. One-way ANOVA 
and two-way ANOVA (p < 0.05) were used with IBM SPSS to explore the relationships between socio-demographic variables and 
perceived performance metrics. The findings indicate consistent perceptions across experience levels and model types, while the 
model output format significantly impacted label accuracy and dataset quality. The results emphasize the importance of output 
representation in improving automated labeling performance and reliability, suggesting directions for future system optimization 
and validation frameworks.
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Introduction
Automated labeling systems powered by deep convolutional 

neural networks (CNNs) have emerged as transformative 
solutions in diverse fields, from medical imaging to industrial 
applications [1]. These systems address a fundamental challenge 
in machine learning: the time-consuming, expensive, and often 
subjective nature of manual data annotation. By leveraging the 
pattern recognition capabilities of CNNs, automated labeling 
systems can process vast amounts of data with a consistency and 
speed unmatched by human annotators, while simultaneously 
reducing costs and enabling scalability for large-scale applications 
[2].These networks learn increasingly complex features in deeper 
layers. Modern approaches often utilize pre-trained models 
like Res Net or DenseNet as backbone networks, which have 
demonstrated superior performance in feature extraction tasks 
[3]. These networks process input images through multiple 
convolutional and pooling layers, automatically learning 
spatial hierarchies of features without manual engineering. The 
architecture often includes mechanisms that focus computational 
resources on relevant image regions, improving both accuracy and 
interpretability [5].Advanced systems integrate multiple detection 

stages, combining regional proposal networks with classification 
heads to simultaneously detect and classify objects. This two-
stage approach, exemplified by Faster R-CNN architectures, 
has proven particularly useful for scenarios requiring accurate 
localization along with classification [6]. The incorporation of 
batch normalization, dropout layers, and residual connections 
helps prevent overfitting while enabling the training of very deep 
networks that capture the subtle discriminative features necessary 
for accurate labeling. 

The success of automated labeling systems depends on data 
quality and preprocessing pipelines. Research has shown that 
even small percentages of incorrectly labeled training data can 
significantly degrade model performance [7]. The challenge of 
label noise has been extensively documented in medical imaging 
applications. [8] Di Noto et al. (2020) demonstrated that automated 
label cleaning systems achieved 95% accuracy in pneumonia 
detection through pediatric chest X-ray analysis, surpassing 
previously reported models by 92% [9]. Their unsupervised data 
cleaning (UDC) technique successfully identified both incorrect 
labels and noisy data, where neither AI nor radiologists could 
consistently classify the images, highlighting the dual challenge 
of mislabeling and inherent data ambiguity. Similarly, Lin et al. 
(2025) addressed label noise in retinal image datasets, with their 
CleanLab-based approach improving label accuracies from a 
baseline of 62.9% after six cleaning cycles, accurately correcting 
most label errors (86.6–97.5%) [10]. Researchers have found that 
deep convolutional neural networks perform exceptionally well in 
automated detection applications. In 2018, Fang and his colleagues 
developed an improved version of Faster R-CNN specifically 
for monitoring construction sites. When used in real-world 
environments, it achieved an accuracy of 91% in detecting workers 
and 95% in detecting excavators. [11]. Their research showed 
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that combining spatial degradation assessments with automated 
classification systems significantly improves diagnostic capabilities 
compared to traditional manual feature extraction techniques [12]. 

The study emphasized that even a fraction of substandard data 
can significantly hinder AI performance, thus necessitating robust 
data quality assessment algorithms. The integration of multiple 
data modalities in automated labeling systems has emerged as a 
significant advancement [13]. Cui and colleagues (2021) integrated 
structural brain volume measurements from T1-weighted MRI 
scans with DTI-based metrics to identify amnestic mild cognitive 
impairment, yielding 71.09% accuracy, 51.96% sensitivity, and 
78.40% specificity [14]. Their research, using the FreeSurfer-
initiated large deformation diffeomorphic metric mapping 
(FS+LDDMM) technique, showed that combining structural brain 
morphological changes with white matter alterations improves 
the detection of subtle brain abnormalities compared to single-
modality imaging approaches.[15]. This study found that various 
socio-demographic, lifestyle, and health variables influence 
classification disorders. This highlights the need for comprehensive 
feature selection strategies.[16]. Despite significant advances 
in automated labeling systems, current approaches face critical 
limitations [17-18]. Existing methods predominantly operate in 
isolation, lacking integration of ensemble detection with multi-
modal data fusion and adaptive weak supervision mechanisms 
[19] Furthermore, there is insufficient attention to real-time 
recommendation systems that not only detect labels but also 
suggest optimal labeling strategies based on data characteristics, 
quality assessment, and domain-specific requirements. [20] The 
absence of comprehensive frameworks that simultaneously address 
label noise detection, quality assessment, and intelligent label 
recommendation while maintaining interpretability represents a 
significant gap in current research.The objective of this study is to 
explore the impact of deep learning expertise on the descriptive 
capabilities of automated labeling systems.

Methodology
This research was conducted during November-December 2025 

using a structured online questionnaire administered via Google 
Forms. Independent variables included gender, occupation, 
experience with deep learning models, application domain, 
deep learning model type, and model output format (2D and 
3D representations) (Table 1). Dependent variables comprised 
perceived accuracy, contextual relevance, clarity, dataset quality, 
uniqueness, sensitivity, false positive rate, recall, and interpretability 
of a label. Data were collected using a five-point Likert scale, and the 
researchers used the ANOVA method along with other statistical 
methods for the analysis.The dependent variables reflected the 
respondents’ opinions on various dimensions of the deep learning 
system’s performance. These included label accuracy, contextual 
relevance, clarity, dataset quality, uniqueness, sensitivity, false 
positive rate, recall, and interpretability. Attitudinal variables were 
measured using a five-point Likert scale ranging from very poor to 
very good; this recorded users’ assessments of model performance, 
reliability, and comprehensibility. To maximize participant 
reach, the Google Forms survey link was distributed through 
digital channels including Facebook, WhatsApp, Instagram, and 
LinkedIn. Respondents were informed about the survey objectives, 
and participation was voluntary, anonymous, and with assured 
confidentiality. 

The online method facilitated convenient and cost-effective data 
collection from diverse professional and demographic groups. The 
automated label detection performance metric showed acceptable 
internal consistency. One-way ANOVA results did not reveal 
statistically significant differences in the perceived performance 
metrics across different levels of deep learning experience or 
various deep learning model types (Tables 3 and 5), indicating 
consistent perceptions regardless of expertise or architecture. In 
contrast, the analysis based on the model output format identified 
statistically significant differences in label accuracy and dataset 
quality between 2D and 3D patch outputs (Table 6), underscoring 
the importance of output representation. Two-way ANOVA 
further confirmed the absence of significant main or interaction 
effects (Tables 7). All analyses were conducted using IBM SPSS 
27.0 software.

Table 1. Independent Variables and Their Response Options Used in the Study
Gender Male/Female/Others
Occupation Industry/Academics/Scientist/R&D person/others
Experience In Deep Learning Model below a year/1-2 year/2-4 year/4-6 year/6 year above
Domain chemical/medical/civil/mechanical/textile/pharmacy/others

DL model
ResNet/3D ResNet/CNN/RCNN/nnDetection/DeepMedic/3D UNET/ResNet/HeadXNet/2D 
CNN/1DCNN/SPCNet/Unet/DeepLabv3+/WLBiLSTM/CLCNN/CL+WLBiLSTM

Model Output 2D patches/3D patches

Table 2. Socio-demographic Characteristics of Respondents
Characteristics Frequency Percent (%)

Gender
Male 191 35.6
Female 279 52
Others 67 12.5

Occupation

Industry 98 18.2
Academics 158 29.4
Scientist 157 29.2
R&D person 101 18.8
others 23 4.3

Experience In Deep Learning Model
below a year 36 6.7
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1-2 years 125 23.3
2-4 years 199 37.1
4-6 years 144 26.8
6 years above 33 6.1

Domain
chemical 56 10.4
medical 93 17.3
civil 75 14
mechanical 150 27.9
textile 71 13.2
pharmacy 78 14.5
others 14 2.6

DL model
ResNet 14 2.6
3D ResNet 19 3.5
CNN 30 5.6

Table 2 shows the socio-demographic characteristics of the survey participants; the majority of them are female participants working 
in the fields of education and science. The majority of them had 2–4 years of deep learning experience and worked in the mechanical and 
medical fields. CNN-based architectures were commonly used, and 2D patch outputs were preferred over 3D patches.

RCNN 56 10.4
nnDetection 42 7.8
DeepMedic 37 6.9
3D UNET 29 5.4
HeadXNet 38 7.1

2D CNN 41 7.6

1D CNN 32 6

SPCNet 46 8.6
UNet 29 5.4
DeepLabv3+ 54 10.1
WLBiLSTM 31 5.8
CLCNN 24 4.5
CL+WLBiLSTM 15 2.8

Model Output
2D patches 343 63.9
3D patches 194 36.1

Figure 1:    Research Methodology Flowchart
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Table 3. One-Way ANOVA Examining Differences in Performance Metrics Across Experience Levels in Deep Learning Models
Sum of Squares df Mean Square F Sig.

Accuracy of a Label 3.684 4 0.921 0.850 0.494
Contextual Fit 2.299 4 0.575 0.413 0.799
Clarity 8.016 4 2.004 1.198 0.311
Dataset Quality 2.069 4 0.517 0.314 0.869
specificity 9.715 4 2.429 1.290 0.273
Sensitivity 1.235 4 0.309 0.180 0.949
False Positive Rate 2.391 4 0.598 0.404 0.806
Recall 3.367 4 0.842 0.534 0.711
Interpretation 8.294 4 2.074 1.167 0.324

Table 3 presents the results of an ANOVA, a method used to examine differences in various performance metrics across experience 
levels in deep learning models. Since all p-values exceeded the 0.05 significance level, these results indicate that there were no statistically 
significant differences in any of the measured variables between the experimental groups. Metrics such as label accuracy, contextual 
relevance, clarity, dataset quality, uniqueness, sensitivity, false positive rate, recall, and interpretability remained relatively consistent 
regardless of experience. These findings suggest that the level of experience in deep learning did not have a significant influence on the 
performance outcomes observed or measured in this study.

Figure 2:    One-Way ANOVA Showing the Effect of Experience in Deep Learning Models on Performance Metrics

Figure 2 illustrates the one-way ANOVA results examining the effect of experience in deep learning models on various performance 
metrics. The mean trends shown in the graph exhibit only minor variations across the experience levels. This visual representation 
confirms the statistical findings and shows that there are no significant differences in performance metrics due to the level of experience.

Table 4. One-Way ANOVA Examining Differences in Performance Metrics Across Deep Learning Models
Sum of Squares df Mean Square F Sig.

Accuracy of a Label 19.998 15 1.333 1.241 0.237
Contextual Fit 16.648 15 1.110 0.797 0.682
Clarity 24.821 15 1.655 0.987 0.467
Dataset Quality 20.099 15 1.340 0.814 0.663
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specificity 32.754 15 2.184 1.163 0.297
Sensitivity 26.835 15 1.789 1.052 0.400
False Positive Rate 28.858 15 1.924 1.318 0.186
Recall 38.454 15 2.564 1.661 0.055
Interpretation 41.419 15 2.761 1.578 0.075

Table 4 presents the one-way ANOVA results comparing the performance metrics across different deep learning models. All evaluated 
metrics did not show statistically significant differences between the models, as their p-values are greater than 0.05. This indicates that, in 
this study, the model type did not significantly affect accuracy, contextual relevance, clarity, or other related performance metrics.

Table 5. One-Way ANOVA Examining Differences in Performance Metrics between Model Outputs
Sum of Squares df Mean Square F Sig.

Accuracy of a Label 40.717 1 40.717 40.429 0.000
Contextual Fit 1.577 1 1.577 1.139 0.286
Clarity 5.822 1 5.822 3.491 0.062
Dataset Quality 15.749 1 15.749 9.773 0.002
specificity 0.004 1 0.004 0.002 0.965
Sensitivity 0.100 1 0.100 0.059 0.808
False Positive Rate 0.074 1 0.074 0.050 0.822
Recall 1.048 1 1.048 0.666 0.415
Interpretation 1.639 1 1.639 0.921 0.338

Table 5 shows the one-way ANOVA results comparing performance metrics across different model outputs. Statistically significant 
differences were found in label accuracy and dataset quality (p < 0.05), while no significant differences were observed between the model 
outputs in contextual relevance, clarity, uniqueness, sensitivity, false positive rate, recall, and interpretability.

Figure 3:  One-Way ANOVA Illustrating Differences in Performance Metrics Across Deep Learning Models
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Figure 3 shows one-way ANOVA plots comparing performance metrics across different deep learning models. The mean values 
across the models are relatively consistent, with no significant deviations. This suggests that the differences between the deep learning 
architectures did not cause statistically significant variations in the evaluated performance metrics.

Table 6. Levene’s Test for Homogeneity of Error Variances for Accuracy of a Label
Levene Statistic df1 df2 Sig.

Label Accuracy Using Mean 1.234 65 455 0.116
Using Median 0.848 65 455 0.792
Using Median with adjusted degrees of freedom 0.848 65 338.13 0.788
Using Trimmed Mean 1.219 65 455 0.129

Evaluates the null hypothesis that error variance for the dependent variable is homogeneous across groups.
a Dependent variable: Label Accuracy
b Design: Intercept + Experience + Deep Learning Model + Experience * Deep Learning Model

Table 6 presents the results of Levene’s test, which assesses the homogeneity of variances for label accuracy Since all significance values 
exceeded 0.05, it confirms equal variances among the data groups, thus fulfilling the variance assumption required for ANOVA analysis.

Figure 4: One-Way ANOVA Showing the Effect of Model Output (2D vs 3D Patches) on Performance Measures

Figure 4 shows the one-way ANOVA results comparing the model outputs based on 2D and 3D patches. Significant differences are 
observed in the accuracy of one label and the quality of the dataset, while other metrics show minimal variation. This indicates that the 
type of model output significantly affects the chosen performance metrics.
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Figure 5:   Interaction Effects of Experience in Deep Learning and Deep Learning Model on Accuracy of a Label (Two-Way 
ANOVA)

Table 7 shows the two-way ANOVA results for label accuracyIt reveals that there are no statistically significant effects from experience, 
the deep learning model, or their interaction (p > 0.05). This model accounts for 17.1% of the total variance, indicating a moderate, but 
not statistically significant, explanatory power.

Table 7. Tests of Between-Subjects Effects for Accuracy of a Label
Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared
Corrected Model 98.287a 76 1.293 1.236 0.101 0.171
Intercept 2104.874 1 2104.874 2011.168 0 0.816
Experience 3.808 4 0.952 0.91 0.458 0.008
Deep Learning Model 16.547 15 1.103 1.054 0.398 0.034
Experience * Deep Learning 
Model 74.751 57 1.311 1.253 0.112 0.136
Error 476.2 455 1.047
Total 5661 532
Corrected Total 574.487 531

a R Squared = .171 (Adjusted R Squared = .033)

Based on the two-way ANOVA results, Figure 4 illustrates 
how experience in deep learning and the type of deep learning 
model interact to affect label accuracy. The non-parallel trends 
indicate variations between the different combinations; however, 
the absence of strong crossover patterns is consistent with 
the statistical results showing no significant interaction effect. 
According to this analysis, the socio-demographic characteristics 
of the respondents, prior deep learning experience, and model 
selection did not significantly affect the perceived performance 
of automated labeling systems. Perceptions of performance were 
consistent across all groups, while the model output format (2D 
versus 3D) emerged as a key factor influencing label accuracy and 
the quality of the dataset.

Conclusion
Automated label detection and recommendation system using 

deep convolutional neural networks: How deep learning expertise, 
model selection, and output format affect user evaluations of 
automated labeling system performance. The results demonstrate 
that the level of deep learning experience does not meaningfully 
impact perceptions of accuracy, contextual relevance, clarity, or 
interpretability, suggesting that contemporary labeling systems 
provide consistent performance regardless of user expertise. 
Additionally, differences between deep learning models did not 
yield statistically significant differences in perceived performance 
metrics, indicating comparable practical performance across 
distinct architectures.Model output format emerged as a crucial 
factor. Significant differences in label accuracy and dataset 
quality were observed between 2D and 3D patch-based outputs, 
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highlighting the importance of output representation in shaping 
system performance. This suggests that output design decisions 
can significantly impact labeling reliability, regardless of model 
architecture or user expertise. A two-way ANOVA analysis further 
confirmed the absence of significant interaction effects between 
experience and model type on labeling accuracy, reinforcing the 
robustness of automated labeling systems across diverse user 
groups. Overall, the study underscores the need to prioritize data 
representation and output strategies alongside model development. 
These findings provide crucial guidance for developing efficient 
and understandable automated coding systems that perform 
consistently across different user groups.


