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Abstract

Modern retail platforms increasingly depend on rich product understanding to support search, recommendation, comparison, and conversational assistance
experiences. These capabilities require structured representation of products, attributes, relationships, and contextual signals that evolve continuously across the
catalog lifecycle. Product knowledge graphs have emerged as a foundational abstraction for modeling this interconnected data at scale.

This paper presents a generalized architecture for retail-scale product knowledge graph systems designed to support low-latency read access alongside
continuous graph updates driven by catalog ingestion, enrichment pipelines, and behavioral signals. The architecture emphasizes separation of concerns between
ingestion, graph construction, serving, and downstream consumption, enabling predictable performance under read-dominated and mixed workloads.

We introduce a workload taxonomy for product knowledge graph access patterns, outline graph modeling and lifecycle design principles, and propose an
empirical evaluation methodology that focuses on normalized read and write latency behavior, traversal efficiency, and operational stability. Observed performance
trends demonstrate that well-partitioned and access-aware graph systems can sustain retail-scale workloads with bounded tail-latency characteristics.
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Introduction

Retail product ecosystems are inherently relational. Products are
associated with categories, attributes, variants, accessories, compatibility
rules, and contextual metadata that together define how they should be
discovered, compared, and recommended. As catalogs grow in size and
dimensionality, representing and serving these relationships efficiently
becomes a central architectural challenge.

Traditional relational and document-oriented data models struggle
to express multi-hop relationships and evolving graph structure without
incurring excessive join complexity or denormalization overhead. In
response, many retail platforms have adopted graph-based abstractions to
model product knowledge in a form that aligns naturally with traversal-
based access patterns used by search ranking, recommendation pipelines,
and conversational agents.

However, operationalizing product knowledge graphs at retail
scale introduces non-trivial challenges. These systems must support
high-concurrency, low-latency read workloads while simultaneously
accommodating frequent updates from batch refreshes, incremental
enrichment, and near real-time signal ingestion. Poor partitioning,
unbounded fan-out, or schema rigidity can lead to performance
degradation that disproportionately impacts tail latency.
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This paper presents a reference architecture for retail-scale product
knowledge graph systems that balances modeling flexibility with serving
efficiency. We formalize common workload archetypes, describe access-
aware graph design patterns, and introduce an evaluation framework that
captures realistic operational behavior. The goal is to provide practitioners
with reusable guidance for building scalable, robust product knowledge
foundations that power modern retail experiences.

System Overview

A retail-scale product knowledge graph system functions as a connective
substrate between heterogeneous product data sources and downstream
retrieval-driven services. Rather than operating as a single monolithic
database, the system coordinates ingestion, graph construction, serving,
and consumption stages, each optimized for distinct operational and
performance concerns.

Upstream inputs include structured product catalogs, taxonomy
hierarchies, attribute feeds, enrichment outputs, and contextual or
behavioral signals. These sources arrive through a mix of batch refresh
pipelines and incremental update streams, often with differing freshness
guarantees, schema evolution characteristics, and data quality constraints.
The system must reconcile partial updates, late-arriving data, and
backward compatibility while maintaining a consistent and queryable
graph view.

The graph construction stage transforms raw inputs into a structured
representation that encodes relationships among products, attributes,
categories, variants, and auxiliary metadata. This process may involve
entity resolution, relationship derivation, attribute normalization, and
selective materialization of frequently traversed paths. Importantly, graph
construction is decoupled from serving, allowing modeling logic to evolve
without destabilizing latency-sensitive access paths.
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The serving layer exposes the product knowledge graph through low-
latency access interfaces optimized for bounded traversals, adjacency
lookups, and attribute retrieval. Typical consumers include search ranking
pipelines, recommendation engines, product comparison services, and
conversational agents, each imposing distinct fan-out limits, traversal
depth expectations, and tail-latency requirements.

To accommodate these diverse workloads, the architecture emphasizes
a clear separation between logical graph semantics and physical
persistence. Graph meaning is defined independently of storage layout,
enabling implementations to adapt to evolving access patterns, scale
characteristics, and infrastructure choices without requiring wholesale
redesign or downstream contract changes.

Design Principles

The architecture is guided by a set of design principles derived from
operating large-scale product knowledge graph systems under production
retail workloads.

Access-Aware Graph Modeling. Graph structure should be driven
by dominant access patterns rather than pure conceptual completeness.
Frequently traversed relationships must exhibit predictable fan-out and
bounded depth, while rarely accessed associations can be deferred or
computed on demand to avoid unnecessary read-path amplification.

Read-Path Optimization. Retail knowledge graph workloads are
overwhelmingly read-dominated. Serving layers should prioritize
adjacency locality, precomputed relationships, and denormalized
projections where appropriate, while isolating write amplification and
background maintenance from latency-critical read paths.

Incremental and Controlled Mutability. Graph updates should be
incremental and scoped to affected subgraphs. Large-scale rewrites, global
repartitioning, or schema-wide backfills introduce operational instability
and increase the risk of tail-latency regressions under load.

Lifecycle Decoupling. Ingestion, enrichment, graph assembly, and
serving interfaces should evolve independently. Explicit contracts between
stages reduce coupling, enable safe iteration, and simplify rollback when
upstream data changes or quality issues are detected.

Operational Observability. Graph systems must expose metrics
aligned with access behavior, including fan-out distributions, traversal
depth, cache effectiveness, and tail latency characteristics. These signals
are essential for detecting pathological access patterns before they
propagate to user-facing services.

Together, these principles establish a foundation for building product
knowledge graph systems that scale with catalog growth while maintaining
predictable performance for latency-sensitive retail experiences.

Graph Abstraction

At retail scale, product knowledge graphs must strike a balance
between expressive relationalmodeling and operational predictability.
Ratherthan exposing arbitrary graph topology toconsumers, effective
systems define a constrainedabstraction that limits traversal depth, fan-
out,and mutation scope while still supporting therelationships required
by retrieval, ranking, and reasoning workloads.

Conceptually, the product knowledge graph ismodeled as a directed,
labeled graph composed ofentities and relationships, where entities
representproducts or product-adjacent concepts andrelationships encode
semantic associations between them. This abstraction explicitly favors
bounded navigation paths over unconstrained exploration, reflecting the
query patterns observed in search, recommendation, comparison, and
conversational systems.
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Graph abstractions are commonly layered. A core structural layer
captures stable, high-signal relationships such as product-to-category,
product-to-attribute, or variant associations. Surrounding layers introduce
auxiliary or derived relationships produced by enrichment pipelines,
compatibility logic, or contextual inference. This separation allows high-
confidence structure to remain stable while more dynamic relationships
evolve independently.

Critically, the abstraction encodes constraints on traversal semantics.
Depth limits, relationship directionality, and fan-out expectations are
defined at the abstraction level rather than enforced implicitly by storage
behavior. These constraints ensure that serving performance remains
predictable even as the underlying graph grows in size, dimensionality,
and update frequency.

By restricting the surface area of graph navigation, the abstraction
provides a disciplined foundation that aligns naturally with retail access
patterns while avoiding the operational risks associated with open-ended
graph exploration.

Generalized Data Model

The generalized data model underlying the product knowledge graph
is designed to support efficient serving while remaining decoupled from
physical storage implementation. Entities are modeled as stable units of
identity with explicit lifecycle semantics, while relationships capture the
associations required for downstream traversal and retrieval.

Entity representations consist of a compact identifier and a curated set
of attributes relevant to retrieval, ranking, and reasoning tasks. Attributes
are selectively materialized based on observed access frequency, update
cadence, and latency sensitivity, preventing uncontrolled duplication
while ensuring that latency-critical attributes remain colocated with entity
identity.

To support predictable performance, entity state is often segmented
into logical groups such as core identity, frequently accessed attributes,
and auxiliary metadata. This segmentation enables partial reads and
targeted updates, reducing read amplification and minimizing the impact
of attribute churn on serving latency.

Relationships are treated as first-class constructs and are directional
by default. Each relationship type carries explicit semantic meaning
and constraints on cardinality and traversal usage. Frequently accessed
relationships may be denormalized or co-located with source entities to
optimize adjacency locality, while infrequent associations are resolved
lazily through secondary lookups.

Access to the graph is mediated exclusively through well-defined
interfaces that enforce traversal bounds, filtering semantics, and
response shaping. This indirection allows the underlying representation,
storage layout, and materialization strategies to evolve without breaking
downstream consumer contracts.

Together, the abstraction and data model establish a disciplined, access-
aware representation of product knowledge that preserves modeling
flexibility while enabling predictable, low-latency access at retail scale.

Workload Taxonomy

Retail product knowledge graph systems are dominated by a small
number of recurring workload archetypes. Although graph structure
may appear general-purpose, practical usage is highly constrained by the
access patterns imposed by downstream retrieval and reasoning services.
A clear taxonomy of these workloads is essential for designing predictable
and scalable serving behavior.
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Attribute Retrieval Workloads. The most common access pattern
consists of retrieving a bounded set of attributes associated with a
product or closely related entities. These queries are latency-sensitive,
high-concurrency, and typically resolved through single-hop or shallow
traversals. Examples include fetching product attributes for ranking
features, display rendering, or filtering logic.

Traversal-Based Retrieval. Traversal workloads involve navigating a
limited number of relationships to assemble contextual views of a product.
Common patterns include product-to-category resolution, variant
grouping, compatibility checks, and accessory or related-item discovery.
Traversals are intentionally bounded in depth and fan-out to ensure
predictable tail latency under load.

Composite Read Workloads. Some consumers issue composite
requests that combine attribute retrieval and traversal in a single logical
operation. These workloads are common in comparison services and
conversational agents, where multiple related entities must be assembled
and filtered before producing a response.

Across all read workloads, predictability of response time is more
important than raw throughput. As a result, the system favors bounded,
repeatable access paths over flexible but unstructured graph exploration.

Write and Update Workloads

In contrast to read traffic, write and update workloads are heterogeneous
in cadence and scope. Product knowledge graphs must accommodate
both large-scale batch updates and fine-grained incremental changes
without destabilizing read performance.

Batch Refresh Pipelines. Batch workloads periodically rebuild or
refresh portions of the graph based on authoritative data sources such as
catalog feeds, taxonomy updates, or enrichment outputs. These operations
may touch a large number of entities or relationships and are typically
executed off the latency-critical serving path.

Incremental Updates. Incremental updates apply localized changes to
specific entities or relationships, such as attribute corrections, availability
changes, or newly inferred associations. These updates are scoped and
frequent, requiring careful isolation to avoid read-path interference.

Derived Relationship Updates. Some updates are computed rather
than ingested directly, including compatibility rules, inferred associations,
or contextual groupings. These updates often impose additional write
amplification and must be designed to respect traversal and fan-out
constraints defined by the graph abstraction.

To maintain predictable performance, write workloads are intentionally
decoupled from serving interfaces. Updates are staged, validated, and
applied in a controlled manner, ensuring that read-dominated workloads
remain insulated from ingestion volatility.

Together, the read and write workload taxonomy establishes the
operational constraints that inform graph structure, access interfaces, and
serving optimizations introduced in subsequent sections.

Product Knowledge Graph Abstraction

The product knowledge graph abstraction is designed to expose a
disciplined, access-aware representation of product relationships while
preventing unbounded traversal and uncontrolled fan-out. Rather than
modeling the entire catalog as an open graph, the abstraction defines a
small, well-scoped neighborhood around each product that aligns with
dominant retail access patterns observed in search, recommendation, and
comparison workflows.

© Perikala. K, et al.

Product entities serve as the primary entry point for all read workloads.
From a product node, consumers traverse a limited set of outgoing
relationships to retrieve attributes, resolve categorization, group variants,
or discover related items. Traversal depth and fan-out are explicitly
constrained to preserve predictable tail latency and to avoid nonlinear
amplification under high-concurrency access.

Supporting entities such as attributes, categories, and related products
are treated as secondary nodes rather than traversal origins. This product-
centric orientation ensures that graph access remains focused on high-
value retrieval paths while avoiding accidental exploration of low-signal
regions or sparsely populated subgraphs.

The abstraction also distinguishes between stable structural
relationships and derived or inferred associations. Core relationships
remain consistent across catalog refreshes, while derived edges evolve
independently based on enrichment logic, compatibility inference, or
contextual signals, reducing coupling between ingestion volatility and
online serving behavior.

From an operational perspective, this abstraction enables predictable
capacity planning and performance isolation. By constraining traversal
shape and relationship semantics at the model level, the system avoids
pathological access patterns that would otherwise surface only under
production traffic, simplifying both testing and ongoing evolution.

Product

‘ Attributes } ‘ Variants ’ { Related Items ‘

associates

The diagram depicts a strictly product-centric graph abstraction with
bounded, directional relationships. All traversals originate at a product
entity and terminate within a small, predefined neighborhood, ensuring
predictable access behavior under retail-scale load.

Relationship semantics are explicit and asymmetric, reflecting the
directional nature of retrieval workloads. No relationship permits
unbounded chaining, recursive traversal, or cross-product navigation,
which ensures that access cost grows linearly with request complexity
rather than graph size.

This abstraction also simplifies downstream system integration. By
presenting a stable, bounded neighborhood around each product, the
graph can be consumed uniformly by ranking models, comparison
services, and conversational agents without requiring consumer-specific
traversal logic or defensive query constraints.
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In practice, this bounded abstraction improves cache effectiveness and
reduces variance in response size across requests. Because traversal shape
is constrained, response payloads remain compact and predictable, which
in turn simplifies client-side processing and reduces downstream memory
pressure under high concurrency.

Finally, the abstraction provides a natural control point for evolution.
New relationship types or entity classes can be introduced incrementally
within the bounded neighborhood, allowing the graph to grow in
expressive power without introducing unbounded traversal risk or
destabilizing existing consumers.

System Architecture Overview

The product knowledge graph system is architected as a layered
pipeline that separates data ingestion, graph construction, serving, and
consumption. This separation enables independent scaling, controlled
evolution, and operational isolation across lifecycle stages while preserving
predictable performance for latency-sensitive workloads.

Upstream data sources include authoritative catalog feeds, taxonomy
hierarchies, enrichment outputs, and contextual signals. These inputs
arrive at heterogeneous cadences through a combination of batch refresh
jobs and incremental update streams. Ingestion pipelines normalize,
validate, and stage incoming data without directly impacting online
serving paths.

Graph construction operates as an offline or nearline process that
materializes product-centric neighborhoods according to the abstraction
defined earlier. This stage resolves entity identity, applies enrichment logic,
derives relationships, and enforces traversal constraints before publishing
graph state to the serving layer.

The serving layer exposes the product knowledge graph through
latency-optimized access APIs designed for bounded retrieval and
traversal. By isolating serving from ingestion and construction, the
architecture ensures that read-dominated workloads remain stable even
during large-scale updates or backfills.

Downstream consumers—including ranking pipelines,
recommendation services, comparison engines, and conversational
agents—interact with the graph exclusively through these serving
interfaces, avoiding direct dependence on storage layout or construction
logic.

From an operational standpoint, this separation of concerns simplifies
capacity planning and fault isolation. Ingestion and construction stages
can be scaled, throttled, or paused independently, allowing operators to
respond to upstream data anomalies without introducing instability into
latency-critical serving paths.

The architecture also enables progressive rollout of new enrichment
logic and relationship types. Because graph construction is decoupled
from serving, new graph features can be validated offline and promoted
incrementally, reducing risk during schema or logic evolution.

© Perikala. K, et al.
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The diagram illustrates a layered architecture in which ingestion,
construction, and serving are explicitly decoupled. Graph state flows
downward through the pipeline, while all online access originates from the
serving layer. This design prevents ingestion volatility or reconstruction
activity from propagating into latency-critical serving paths.

The serving layer functions as a stable contract boundary for all
downstream systems. Consumers are insulated from changes in upstream
data sources, construction logic, and enrichment strategies, allowing
independent iteration without cross-team coordination overhead.

This structure also supports heterogeneous consumption patterns.
Online systems rely on low-latency serving APIs, while offline consumers
may leverage periodic exports or snapshots generated during graph
construction, ensuring consistent semantics across analytical and serving
workloads.

Finally, the architecture enables controlled experimentation. New graph
features, enrichment models, or serving optimizations can be introduced
behind the serving interface and evaluated incrementally, allowing
performance and correctness to be validated before broad rollout.

Evaluation Objectives

The goal of the evaluation is to characterize the performance behavior
of the product knowledge graph system under realistic retail workloads.
Rather than optimizing for peak throughput or isolated microbenchmarks,
the evaluation emphasizes tail-latency stability, scalability under
concurrency, and predictable behavior across mixed read and write
conditions.

Retail-facing systems are typically constrained by tail latency rather
than average response time. As a result, the evaluation prioritizes
distributional behavior under sustained load, focusing on how bounded
graph traversals behave as concurrency increases and as update activity is
introduced.
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The methodology is designed to answer three primary questions: how
efficiently the system serves product-centric neighborhoods under high
read concurrency, how incremental updates and derived relationship
materialization affect read-path latency, and how performance trends
evolve as graph size and access pressure scale together.

To ensure portability and comparability of results, all performance
metrics are reported using normalized values relative to a fixed
baseline  configuration. ~ Absolute infrastructure characteristics,
hardware specifications, and deployment-specific tuning parameters
are intentionally abstracted to emphasize relative behavior rather than
environment-dependent outcomes.

This normalization approach enables results to generalize across
different implementations and deployment environments while
preserving insight into architectural trade-offs, access-pattern sensitivity,
and the impact of graph design choices on observed performance.

Beyond latency characterization, the evaluation also aims to surface
qualitative system behaviors that are difficult to capture through single
metrics alone. These include sensitivity to workload skew, resilience to
update bursts, and stability of response characteristics under prolonged
high-concurrency execution.

Workload and Measurement Design

Evaluation workloads are constructed to reflect the dominant access
patterns observed in production retail systems. Read workloads include
attribute retrieval, bounded traversals, and composite requests that
combine multiple access paths within a single query. All requests are
explicitly constrained to remain within the traversal depth and fan-out
limits defined by the graph abstraction.

Write workloads include incremental updates to entity attributes,
relationship corrections, and derived association materialization executed
concurrently with read traffic. These updates are scoped to localized
subgraphs to reflect realistic enrichment behavior rather than full graph
reconstruction, which is evaluated separately.

Latency measurements focus on percentile-based metrics computed
over sustained load intervals. Measurements are taken after warm-up
periods to avoid transient effects and are aggregated across multiple runs
to ensure stability. Reported percentiles capture steady-state behavior
rather than short-lived spikes.

All latency values are normalized relative to a baseline read-only
configuration operating at low concurrency. This baseline establishes
a reference point against which the impact of concurrency, mixed
workloads, and update pressure can be evaluated consistently.

In addition to latency, secondary signals such as response size
distribution, error rates, and retry behavior are monitored to ensure that
apparent performance stability is not masking partial failures, timeouts,
or backpressure effects.

The evaluation further examines how latency distributions shift as
concurrency increases, highlighting nonlinear degradation patterns
that may not be apparent from average metrics alone. This analysis is
particularly important for graph-based workloads, where traversal fan-
out and request composition can amplify small inefficiencies under load.

Together, these measurements provide a comprehensive view of
system behavior under realistic retail access patterns and establish a
robust foundation for interpreting the empirical results presented in the
following section.

© Perikala. K, et al.

Latency Characteristics

This section summarizes the observed tail-latency behavior of the
product knowledge graph under representative retail operating scenarios.
The focus is exclusively on p95 and p99 latency, as these percentiles govern
user-facing experience and system-level service guarantees.

Due to proprietary and confidentiality considerations, all latency
values are reported in normalized form. Absolute latency measurements,
infrastructure characteristics, and deployment-specific tuning parameters
are intentionally omitted. Normalization preserves relative behavior across
scenarios while preventing disclosure of sensitive operational details.

Normalized ranges are mapped to an indicative millisecond envelope to
convey order-of-magnitude behavior without revealing exact production
metrics. Across evaluated scenarios, p95 and p99 latency remain bounded
within a narrow range, demonstrating predictable tail behavior under
load.

Table 1: Normalized p95 and p99 latency characteristics across
representative operating scenarios. Reported ranges correspond to
an indicative millisecond envelope. Metrics are normalized due to
proprietary considerations.

Scenario p95 (ms) p99 (ms)
Steady-state reads 25-40 50-100
Mixed read-write 35-60 75-150
Batch refresh 25-100 40-250

The results indicate that steady-state read traffic exhibits tightly
bounded tail latency, while mixed workloads and batch refresh activity
introduce controlled and predictable increases. Importantly, no scenario
demonstrates unbounded growth or instability in p99 latency.

Discussion

The observed latency behavior reflects the effectiveness of the product-
centric graph abstraction and the architectural separation between
ingestion, construction, and serving. Even under concurrent update
pressure, tail latency remains bounded within a narrow envelope,
indicating strong isolation between read and write paths.

Batch refresh activity introduces measurable but controlled increases
in p95 latency, driven by background reconstruction and materialization
overhead. However, p99 latency remains within service-level targets,
suggesting that the serving layer absorbs transient pressure without
cascading degradation.

Post-failover scenarios exhibit short-lived tail amplification followed
by rapid convergence to baseline behavior. This indicates that recovery
mechanisms reestablish stable serving performance without prolonged
impact on user-facing requests.

Taken together, these results demonstrate that the system delivers
predictable tail-latency behavior across realistic retail scenarios, even
when subjected to mixed workloads, batch activity, and recovery events.
The bounded nature of p95 and p99 latency validates the design choices
underlying the graph abstraction and serving architecture.
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Limitations

The proposed architecture and product knowledge graph abstraction
have been validated under sustained ingestion and high-concurrency read
workloads while maintaining bounded p95 and p99 latency. Accordingly,
the limitations of this work are not related to the correctness or scalability
of the serving layer, but instead reflect scope, modeling assumptions, and
graph-specific constraints.

First, while traversal depth and fan-out are explicitly bounded, the
architecture does not fully eliminate the emergence of super nodes. Highly
connected entities such as popular categories, shared attributes, or globally
referenced products may accumulate large adjacency sets. Although access
to such nodes is mediated through constrained APIs, extreme access skew
may require additional mitigation techniques including fan-out capping,
selective denormalization, or replicated read paths.

Second, the abstraction is intentionally optimized for product-centric
retrieval and shallow traversal. Use cases requiring deep, recursive, or ad
hoc graph exploration fall outside the intended design envelope and may
be better served by analytical graph processing engines rather than low-
latency serving systems.

Finally, evaluation results intentionally abstract away from underlying
hardware, cloud SKUs, and tuning parameters to preserve generality and
confidentiality. As a result, cost-efficiency trade-offs and absolute capacity
limits remain deployment-specific and should be evaluated within
individual production environments.

Future Directions

Future work will focus on adaptive detection and mitigation of super-
node behavior using access-frequency-aware materialization and dynamic
fan-out shaping. Integrating real-time observability with serving-layer
controls may further reduce tail amplification under skewed workloads.

Additional directions include standardized benchmarking profiles for
graph serving workloads, tighter coupling between analytics and serving
layers for replay-based validation, and automated detection of workload
drift that impacts traversal behavior over time.

Conclusion

This paper presented a cloud-native architecture and disciplined graph
abstraction for retail-scale product knowledge serving. By constraining
graph structure, enforcing bounded traversal, and decoupling ingestion,
construction, and serving, the system delivers predictable tail-latency
behavior under sustained, high-throughput operating conditions.

Through a workload taxonomy and a latency-centric evaluation
methodology focused on p95 and p99 behavior, this work reframes
product knowledge graphs as governed serving systems rather than
general-purpose graph databases. The results demonstrate that careful
modeling and architectural isolation can deliver stable performance even
under mixed workloads, batch refresh activity, and recovery scenarios.
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