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Abstract
The accelerating rise in sea levels poses a significant challenge for coastal communities, necessitating accurate forecasting methods. This study evaluates the 

efficacy of various time series models in predicting long-term sea level changes, including ARIMA, ETS, NNETAR, THETAM, TBATS, STLM, and their hybrid 
combinations. Using monthly mean sea level data from Ocean City, Maryland, spanning August 2002 to February 2025, a comparative analysis was conducted. 
The NNAR(24,1,12)[12] model emerged as the most accurate, performing exceptionally well across all metrics, particularly with very low RMSE and MAE values 
among all tested models. These findings underscore the potential of neural network-based approaches in sea level forecasting and highlight the importance of 
integrated modeling techniques as decision-support tools for local mean sea level predictions. Understanding historical sea level trends is crucial for improving 
future projections, and this study contributes to that knowledge base. Continued research efforts leveraging these data-driven insights can significantly enhance our 
ability to refine predictions and develop effective strategies to mitigate the impacts of sea level rise
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Introduction
Ecological change refers to the long-term alteration in the average 

weather patterns of the Earth. It is primarily triggered by human activities 
such as the burning of fossil fuels and deforestation, as well as natural 
events like volcanic eruptions. The National Oceanic and Atmospheric 
Administration (NOAA) 2019 Global Climate Annual Report summarized 
that the global annual temperature has increased at an average rate of 
0.07°C (0.13°F) per decade since 1880. This rate of increase (+0.18°C / 
+0.32°F) has doubled since 1981.

Two major factors related to ecological change cause global sea level 
rise: the addition of water from melting ice sheets and glaciers, and the 
thermal expansion of warming waters. Locally, the amount and speed of 
sea level rise vary by location, particularly due to the slowing Gulf Stream 
and sinking land, which affect some areas in the United States at varying 
rates. The potential impacts of sea level rise include, but are not limited to, 
increased coastal flooding and erosion, damage to agricultural land and 
crops, damage to coastal and urban settlements and infrastructure, and 
harm to coastal flora and fauna ecosystems.

According to NOAA Climate.gov, the global average sea level has risen 
about 8-9 inches (21-24 cm) since 1880. The Intergovernmental Panel 
on Climate Change (IPCC) estimated in 2014 that the sea level has risen 
by 26-55 cm (10-22 inches) with a 67% confidence interval. If emissions 
remain very high, the IPCC projects that sea level could rise by 52-98 

cm (20-39 inches). The U.S. Global Change Research Program (USGCRP) 
estimated in its Fourth National Climate Assessment Report (2017) that 
sea level has risen by about 7-8 inches (16-21 cm) since 1900, with about 3 
of those inches (7 cm) occurring since 1993. Relative to the year 2000, sea 
level is very likely to rise by 1.0-4.3 feet (30-130 cm) by 2100, and 0.3-0.6 
feet (9-18 cm) by 2030.

Furthermore, Church and White (2011) revealed that the estimated 
rate of sea level rise was 3.2 ± 0.4 mm/year from satellite data and 2.8 ± 
0.8 mm/year from in situ data. The average global sea level rise from 1880 
to 2009 was about 210 mm. The linear trend from 1900 to 2009 was 1.7 
± 0.2 mm/year, and since 1961, it has been 1.9 ± 0.4 mm/year. They also 
documented considerable variability in the rate of sea level rise during the 
twentieth century, but there has been a statistically significant acceleration 
since 1880 and 1900 of 0.009 ± 0.003 mm/year² and 0.009 ± 0.004 mm/
year², respectively.

Many studies have pointed out that sea level is rising at an increasing 
rate (Church et al., 2008; Cazenave &Llovel, 2010; Church & White, 
2011; Cazenave &Cozannet, 2013; Horton et al., 2018; Kulp & Strauss, 
2019; Haasnoot et al., 2020; Boumis et al., 2023). Thus, understanding 
past sea levels is important for analyzing current and future sea level 
changes. Modeling sea level changes and understanding their causes have 
considerably improved in recent years, primarily due to new in situ and 
remote sensing observations (Foster & Brown, 2014; Visser et al., 2015; 
Bolin et al., 2015; Srivastava et al., 2016). Despite the importance of sea 
level rise and its consequences, there is a lack of studies in the technical 
literature on forecasting schemes for local consideration.

Time series forecasting uses a model to predict future values based 
on previously observed values. Neural networks have become one of the 
most popular trends in machine learning for time series modeling and 
forecasting. Recently, there has been increasing interest in using neural 
networks to model and forecast time series, particularly in addressing sea 
level rise issues (Bruneau et al., 2020; Bruno & Afonso, 2021; Alenezi et 
al., 2023).

The primary purpose of this study was to demonstrate the role of time 
series models in the prediction process and to analyze long-term records 
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of monthly mean sea level at Ocean City, Maryland. Future directions in data-driven sea level forecasting aim to enhance model accuracy, integrate 
diverse data sources, and provide more detailed and actionable predictions. These advancements will play a crucial role in helping coastal communities 
and policymakers prepare for and respond to the challenges posed by rising sea levels.

Materials
Study Site

Ocean City, officially the Town of Ocean City, is an Atlantic resort city 
in Worcester County, Maryland, along the East Coast of the United States 
(Figure 1). Known for its beautiful beaches, bustling boardwalks, and lively 
entertainment scene, Ocean City, Maryland, attracts millions of visitors 
annually, particularly during the summer months, making it a major 
vacation destination. Ocean City’s history traces back to its origins as a 
fishing village, evolving into a thriving resort town with a strong emphasis 
on family fun and entertainment (Wikipedia: Ocean City, Maryland).

Figure 1: Ocean City, Maryland, USA (Source: Map of Beaches in Maryland, adapted from: https://www.livebeaches.com/map-of-beaches-in-
maryland/)

According to the U.S. Census Bureau, the town has a total area of 
36.37 square miles (94.20 km²), of which 4.41 square miles (11.42 km²) 
is land and 31.96 square miles (82.78 km²) is water. Ocean City is located 
on Fenwick Island, a barrier spit that encompasses Ocean City, as well 
as South Bethany and Fenwick Island, Delaware. Ocean City’s southern 
point is an inlet formed by the 1933 Chesapeake–Potomac hurricane. 
Rainfall and tides swelled the rivers and bays surrounding Ocean City 
until the overflowing water cut a 50-foot crevasse from the bay to the 
ocean (Wikipedia: Ocean City, Maryland).

Data Source
The long-term records of monthly mean sea level from August 2002 to February 2025 at Ocean City, Maryland, used for this study are available to 

the public from NOAA Tides and Currents. The average monthly mean sea level was 0.1123 mm/year with a standard deviation of 0.0794 mm/year 
(Minimum: -0.0880 mm/year, Maximum: 0.3590 mm/year, and Median: 0.1123 mm/year) at Ocean City, Maryland, from August 2002 to February 2025.

According to NOAA Tides and Currents, the term “mean sea level” can refer to a tidal datum, which is locally derived based on observations at a tide 
station and is typically computed over a 19-year period, known as the National Tidal Datum Epoch (NTDE). Tidal datum forms the basis of marine 
boundaries, can be used as a vertical reference plane in producing nautical charts, and provides important baseline information for observing changes 
in sea level over time. Mean sea level as a tidal datum is computed as the mean of hourly water level heights observed over 19 years. Monthly means 
generated in the datum calculation process are used to generate the relative local sea level trends observed at a tide station.

Figure 2: Time Series Plot of Monthly Mean Sea Level at Ocean City, Maryland, August 2002 ~ February 2025 (Source: R Output)
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Method
forecast Hybrid

The “forecastHybrid” package in R provides convenient functions for 
ensemble time series forecasts. It allows users to build composite models 
using multiple individual component models from the “forecast” package. 
Forecasts generated from auto.arima(), ets(), nnetar(), tbats(), thetam(), 
and stlm() can be combined with equal weights or cross-validated weights 
(Perone, 2022).

ARIMA (AutoRegressive Integrated Moving Average) combines 
autoregressive (AR), differencing (I), and moving average (MA) 
components. It is particularly suitable for univariate time series 
forecasting, especially when the data exhibits trends and seasonality. One 
of its strengths is its effectiveness for non-stationary data after differencing, 
making it widely used and well-understood in the field. However, ARIMA 
requires manual tuning of its parameters (p, d, q), which can make it 
complex to implement.

ETS (Error, Trend, Seasonal) incorporates error, trend, and seasonal 
components, offering options for additive or multiplicative models. It is 
particularly suitable for time series data with clear seasonal patterns. One 
of its strengths is its flexibility, as it can handle various types of seasonality 
and trends, and it features automatic model selection. However, ETS 
can be computationally intensive and may not perform well with very 
irregular data.

NNETAR (Neural Network Time Series) utilizes feed-forward neural 
networks with lagged inputs for forecasting. It is particularly suitable for 
capturing nonlinear relationships in univariate time series data. One of its 
strengths is its ability to model complex patterns and interactions, making 
it adaptable to various data types. However, NNETAR requires significant 
computational resources, and the results can vary due to randomness in 
the training process.

TBATS (Trigonometric, Box-Cox, ARMA, Trend, Seasonal) 
incorporates trigonometric seasonality, Box-Cox transformation, ARMA 
errors, trend, and seasonal components. It is ideal for time series data with 
complex seasonal patterns and long seasonal cycles. One of its strengths 
is its ability to handle multiple seasonal periods and complex seasonality, 
making it robust to outliers. However, TBATS is computationally 
demanding and slower to fit compared to simpler models.

TEHTAM (Technology Acceptance Model) focuses on perceived 
usefulness and ease of use to predict technology acceptance. Unlike 
time series models, TEHTAM is used to understand user acceptance 
of technology. Its strengths lie in providing valuable insights into user 
behavior and technology adoption. However, it is not applicable for 
forecasting time series data.

STLM (Seasonal-Trend decomposition using Loess) decomposes time 
series data into seasonal, trend, and remainder components using Loess 
smoothing. It is particularly suitable for time series with strong seasonal 
and trend components. One of its strengths is its flexibility and robustness 
to outliers, and it can be combined with other forecasting methods. 
However, STLM requires careful selection of smoothing parameters and 
can be sensitive to noise.

Neural Network Autoregression (NNAR) Models

Feed-forward neural networks with a single hidden layer and lagged 
inputs, also known as Neural Network Autoregression (NNAR) models, 
are commonly used for forecasting univariate time series (Zhang et al., 
1998). These models treat lagged values of the time series as inputs, similar 
to autoregressive (AR) models, but use a non-linear function (the hidden 
layer) to predict the next value (Tealab, 2018). NNAR models can be 

adapted to seasonal time series by including lagged values from previous 
seasons as inputs.

NNAR is a type of autoregressive model where neural networks are 
used to learn the non-linear relationships between past and future values 
in a time series. The equation of NNAR can be expressed as follows: 

In this equation,  (where βij = 0, 1, 2, …, n and j = 1, 2, …, ℎ) and αj 
(where  j = 0, 1, 2, …, ℎ) are weight in the model. The notation p represents 
the number of neurons in the input layer, and ℎ represents the number of 
neurons in the hidden layer. 

This autoregressive neural network uses a single hidden layer, and the 
results of weighted linear combinations are modified into artificial neural 
network output using non-linear functions. The linear combination 
function can be written as follows:

Here, Zj is the sum function of the bias unit to j in the hidden layer,  
β0j  is the weight of the bias unit to j , βij is the weight of i. in the layer to j,  
and βij   is the input to i. The network activation function is a non-linear 
function in the form of a binary sigmoid function, written as follows: 

	

The equation above is a function of z; this sigmoid function is a part of 
the activation function in the single-layer network model (Daniyal et al., 
2022; Almarashi et al., 2024; Hightower et al., 2024).

Output is denoted by NNAR(p,k), where p denotes the number of lagged 
values used as inputs, and k denotes the number of hidden nodes. For 
example, a NNAR(13,7) model is a neural network with the last thirteen 
observations (yt−1, yt−2, …, yt−13) used as inputs for forecasting the output 
yt, and with seven neurons in the hidden layer. A NNAR (p,0) model is 
equivalent to an ARIMA (p,0,0) model, but without the restrictions on the 
parameters to ensure stationarity.

If the dataset is seasonal, the notation is similar: NNAR(p,P,k) where P 
denotes the number of seasonal lags. P is chosen based on the information 
criterion, like AIC. For example, an NNAR(3,1,2)[12] model has inputs 
yt-1, yt-2, yt-3 and 

yt-12, and two neurons in the hidden layers. More generally, an NNAR 
(p,P,k) [m] model has inputs (yt−1, yt−2, …, yt−p, yt−m, yt−2m, …, yt−Pm) and k 
neurons in the hidden layer. A NNAR (p,P,0)[m] model is equivalent to 
an ARIMA (p,0,0) (P,0,0) [m] model but without the restrictions on the 
parameters that ensure stationarity.

Model Evaluation Metrics

Five model evaluation metrics were employed to assess model accuracy 
and determine the best-fit time series model. The Mean Error (ME) was 
used to measure bias, indicating whether the model systematically over- or 
under-predicts the actual values. The Root Mean Squared Error (RMSE) 
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penalized large errors, making it particularly sensitive to significant 
deviations between predicted and actual values. 

Additionally, the Mean Absolute Error (MAE) provided insight into the 
average magnitude of forecast errors, offering a straightforward measure 
of accuracy. The Mean Percentage Error (MPE) was applied to evaluate 
bias in percentage terms, helping to understand whether the model tends 
to overestimate or underestimate in relative terms. 

Lastly, the Mean Absolute Percentage Error (MAPE) was used to assess 
overall forecast accuracy, ensuring a robust evaluation of the model’s 
predictive performance. These model evaluation metrics provide insights 
into model accuracy, bias, and forecasting reliability. The lower the values, 
the better the model’s predictive accuracy (Perone, 2022; Daniyal et al., 
2022; Almarashi et al., 2024; Hightower et al., 2024).

Results
Decomposing a seasonal time series involves separating the time 

series into a trend component, a seasonal component, and an irregular 
component. The function decompose() in R can be applied to separate 
these components of a seasonal time series. The plots in Figure 3 show 
the original time series (top), the estimated trend component (second 
from top), the estimated seasonal component (third from top), and the 
estimated irregular component (bottom). The estimated trend component 
shows a steady increase over time, and the estimated seasonal component 
clearly displays seasonality, with a recurring pattern occurring once every 
12 months (yearly).

Figure 3: Decomposition of Monthly Mean Sea Level at Ocean City, Maryland, August 2002 ~ February 2025 (Source: R Output)

Table 1. Model Comparison with Equal Weights Using Whole Data

Model ME RMSE MAE MPE MAPE

ALL 0.0019 0.0464 0.0362 22.0105 80.1503

ARIMA(0,1,2)(0,0,1)[12] 0.0028 0.0549 0.0433 32.6959 99.5376

ETS(A,N,N) 0.0011 0.0563 0.0442 28.9727 102.0032

NNAR(24,1,12)[12] 2.35e-05 0.0011 0.0006 -0.0911 1.2191

THETAM -0.0015 0.0577 0.0454 27.8751 104.4574

TBATS 0.0048 0.0554 0.0431 31.5363 97.9432

STLM 0.0008 0.0529 0.0417 27.2736 96.1549

Hybrid (ARIMA × ETS) 0.0019 0.0552 0.0434 30.8343 100.3814

Hybrid (ARIMA × NNAR) 0.0018 0.0284 0.0224 15.5025 49.0385

Hybrid (ARIMA × TBATS) 0.0038 0.0548 0.0429 32.1161 97.5751

To ensure reproducibility of results, the set.seed() function was used 
before building time series forecasting models with auto.arima(), ets(), 
nnetar(), tbats(), thetam(), and stlm(). These models were then combined 
with equal weights to maintain a balanced influence. The accuracy of time 
series forecasting was measured using five evaluation metrics: ME (Mean 

Error), RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), 
MPE (Mean Percentage Error), and MAPE (Mean Absolute Percentage 
Error), as shown in Table 1.
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Hybrid (ARIMA × THETAM) 0.0006 0.0555 0.0436 30.2855 101.2597

Hybrid (ARIMA × STLM) 0.0018 0.0527 0.0413 29.9847 96.3022

Hybrid (ETS × NNAR) 0.0008 0.0293 0.0229 12.9262 50.6615

Hybrid (ETS × TBATS) 0.0030 0.0556 0.0434 30.2545 98.9815

Hybrid (ETS × THETAM) -0.0002 0.0566 0.0445 28.4239 102.9636

Hybrid (ETS × STLM) 0.0010 0.0541 0.0423 28.1231 98.1489

Hybrid (NNAR × TBATS) 0.0032 0.0286 0.0222 14.3976 47.9376

Hybrid (NNAR × THETAM) -0.0007 0.0299 0.0235 12.0620 51.7234

One of the main objectives of decomposition is to estimate seasonal 
effects that can be used to create and present seasonally adjusted values. 
Seasonal adjustment involves removing seasonal effects that are not 
explainable by the dynamics of trends or cycles from a time series to 
reveal certain non-seasonal features. This can be done by subtracting 

Figure 4: Time Series Plot of Seasonal Adjusted Monthly Mean Sea Level at Ocean City, Maryland, August 2002 ~ February 2025 (Source: R 
Output)

Based on the comparison of various forecasting models, it is evident 
that the NNAR (24,1,12)[12] model stands out as the most accurate and 
reliable (Figure 5). This model consistently achieved the lowest error 
metrics across all categories, including ME, RMSE, MAE, MPE, and 
MAPE. Its performance is particularly noteworthy in terms of RMSE and 
MAE, where it significantly outperformed other models, indicating its 
high precision in forecasting.

Hybrid models (Zhang, 2003) that incorporate NNAR also 
demonstrated strong performance, especially Hybrid (NNAR × STLM) 
and Hybrid (NNAR × TBATS). These models leveraged the strengths of 
NNAR and other methods to achieve lower error rates, making them viable 
options for accurate forecasting. The combination of NNAR with STLM, 
in particular, showed promising results with low RMSE and MAE values, 
suggesting that hybrid approaches can enhance forecasting accuracy.

On the other hand, models like ETS(A,N,N) and THETAM exhibited 
higher error metrics, indicating less reliability in their forecasts. While 
these models may still be useful in certain contexts, their higher error rates 
suggest that they may not be the best choice for applications requiring 
high precision.

In conclusion, the NNAR model and its hybrid variations offer the best 
overall performance for forecasting, with significantly lower error metrics 
compared to other models. These findings highlight the importance 
of selecting models that balance accuracy and reliability, especially in 
fields where precise forecasting is crucial. Comparison underscores the 
potential of hybrid models to improve forecasting accuracy by combining 
the strengths of different approaches.

the estimated seasonal component from the original time series. After 
removing the seasonal variation, the seasonally adjusted time series 
contains only the trend component and an irregular component (Figure 
4).



Citation: Yeong Nain Chi (2025). Time Series Forecasting Mean Sea Level in Ocean City, Maryland Using a Neural Network Autoregressive Model. International Journal of 
Artificial intelligence and Machine Learning, 3(4), 1-7. https://doi.org/10.55124/jaim.v3i4.290

6

©  Yeong Nain Chi, at al.

Figure 5: Time Series Forecasting Model of NNAR(24,1,12)[12] (Source: R Output)

Discussion and Conclusion
The importance of sea level forecasting cannot be overstated. It plays 

a vital role in protecting lives, preserving ecosystems, and ensuring 
sustainable development in coastal regions. By leveraging advanced time 
series models and integrating data from various sources, scientists and 
policymakers can better anticipate and respond to the challenges posed 
by rising sea levels.

Accurate forecasts enable early warning systems and disaster 
preparedness, allowing communities to respond effectively to impending 
floods. Additionally, forecasting aids in designing resilient structures and 
retrofitting existing infrastructure to withstand future sea level changes. 
It plays a vital role in environmental conservation by protecting critical 
habitats such as wetlands, mangroves, and coral reefs, and supporting 
restoration projects.

Policymakers rely on sea level forecasts to make informed decisions 
about land use, zoning, and coastal development, ensuring sustainable 
development. Furthermore, sea level forecasting drives scientific research 
and innovation, leading to improved predictive models and technological 
advancements. Overall, sea level forecasting is essential for protecting 
lives, preserving ecosystems, and ensuring sustainable development in 
coastal regions.

In this study, the NNAR (24,1,12)[12] model demonstrated the best 
overall performance with the lowest error metrics across all categories, 
making it the most accurate and reliable forecasting model. Hybrid models 
that combine NNAR with other methods, such as STLM and TBATS, 
also showed strong performance. These models leverage the strengths of 
multiple approaches to achieve lower error rates and enhance forecasting 
accuracy. ETS(A,N,N) and THETAM models exhibited higher error 
metrics, indicating less reliability in their forecasts compared to NNAR 
and hybrid models.

The superior performance of NNAR and hybrid models suggests that 
neural network-based and hybrid approaches can provide highly accurate 
forecasts, which can benefit various domains such as finance, supply chain 
management, and strategic planning. Overall, the NNAR model and its 

hybrid variations offer the best forecasting accuracy, highlighting the 
potential of advanced machine learning techniques and hybrid approaches 
in improving forecasting reliability.

The future of data-driven sea level forecasting is promising, with 
several innovative approaches and advancements on the horizon. One key 
area of focus is the integration of advanced machine learning techniques, 
such as Long Short-Term Memory (LSTM) models, which have shown 
superior performance in forecasting sea level rise. Researchers are 
working on refining these models further to enhance their accuracy 
and computational efficiency. Another promising approach is the use of 
synthetic data to augment real-world datasets, which helps in training 
models more effectively, especially when historical data is limited.

Addressing uncertainty in sea level forecasts is crucial, and future 
research focuses on developing methods to quantify and reduce uncertainty 
using probabilistic models and ensemble forecasting techniques. Real-
time monitoring and forecasting advancements will enable more timely 
and accurate sea level forecasts by integrating real-time data from sensors 
and satellite observations with predictive models. Finally, developing 
decision support systems that utilize advanced forecasting models can aid 
policymakers in making informed decisions, providing actionable insights 
and recommendations based on the latest sea level predictions. These 
advancements will play a crucial role in helping coastal communities and 
policymakers prepare for and respond to the challenges posed by rising 
sea levels.
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