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Abstract

The accelerating rise in sea levels poses a significant challenge for coastal communities, necessitating accurate forecasting methods. This study evaluates the
efficacy of various time series models in predicting long-term sea level changes, including ARIMA, ETS, NNETAR, THETAM, TBATS, STLM, and their hybrid
combinations. Using monthly mean sea level data from Ocean City, Maryland, spanning August 2002 to February 2025, a comparative analysis was conducted.
The NNAR(24,1,12)[12] model emerged as the most accurate, performing exceptionally well across all metrics, particularly with very low RMSE and MAE values
among all tested models. These findings underscore the potential of neural network-based approaches in sea level forecasting and highlight the importance of
integrated modeling techniques as decision-support tools for local mean sea level predictions. Understanding historical sea level trends is crucial for improving
future projections, and this study contributes to that knowledge base. Continued research efforts leveraging these data-driven insights can significantly enhance our
ability to refine predictions and develop effective strategies to mitigate the impacts of sea level rise

Introduction

Ecological change refers to the long-term alteration in the average
weather patterns of the Earth. It is primarily triggered by human activities
such as the burning of fossil fuels and deforestation, as well as natural
events like volcanic eruptions. The National Oceanic and Atmospheric
Administration (NOAA) 2019 Global Climate Annual Report summarized
that the global annual temperature has increased at an average rate of
0.07°C (0.13°F) per decade since 1880. This rate of increase (+0.18°C /
+0.32°F) has doubled since 1981.

Two major factors related to ecological change cause global sea level
rise: the addition of water from melting ice sheets and glaciers, and the
thermal expansion of warming waters. Locally, the amount and speed of
sea level rise vary by location, particularly due to the slowing Gulf Stream
and sinking land, which affect some areas in the United States at varying
rates. The potential impacts of sea level rise include, but are not limited to,
increased coastal flooding and erosion, damage to agricultural land and
crops, damage to coastal and urban settlements and infrastructure, and
harm to coastal flora and fauna ecosystems.

According to NOAA Climate.gov, the global average sea level has risen
about 8-9 inches (21-24 cm) since 1880. The Intergovernmental Panel
on Climate Change (IPCC) estimated in 2014 that the sea level has risen
by 26-55 cm (10-22 inches) with a 67% confidence interval. If emissions
remain very high, the IPCC projects that sea level could rise by 52-98
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cm (20-39 inches). The U.S. Global Change Research Program (USGCRP)
estimated in its Fourth National Climate Assessment Report (2017) that
sea level has risen by about 7-8 inches (16-21 cm) since 1900, with about 3
of those inches (7 cm) occurring since 1993. Relative to the year 2000, sea
level is very likely to rise by 1.0-4.3 feet (30-130 cm) by 2100, and 0.3-0.6
feet (9-18 cm) by 2030.

Furthermore, Church and White (2011) revealed that the estimated
rate of sea level rise was 3.2 + 0.4 mm/year from satellite data and 2.8 +
0.8 mm/year from in situ data. The average global sea level rise from 1880
to 2009 was about 210 mm. The linear trend from 1900 to 2009 was 1.7
+ 0.2 mm/year, and since 1961, it has been 1.9 + 0.4 mm/year. They also
documented considerable variability in the rate of sea level rise during the
twentieth century, but there has been a statistically significant acceleration
since 1880 and 1900 of 0.009 + 0.003 mm/year” and 0.009 + 0.004 mm/
year?, respectively.

Many studies have pointed out that sea level is rising at an increasing
rate (Church et al.,, 2008; Cazenave &Llovel, 2010; Church & White,
2011; Cazenave &Cozannet, 2013; Horton et al., 2018; Kulp & Strauss,
2019; Haasnoot et al., 2020; Boumis et al., 2023). Thus, understanding
past sea levels is important for analyzing current and future sea level
changes. Modeling sea level changes and understanding their causes have
considerably improved in recent years, primarily due to new in situ and
remote sensing observations (Foster & Brown, 2014; Visser et al., 2015;
Bolin et al.,, 2015; Srivastava et al., 2016). Despite the importance of sea
level rise and its consequences, there is a lack of studies in the technical
literature on forecasting schemes for local consideration.

Time series forecasting uses a model to predict future values based
on previously observed values. Neural networks have become one of the
most popular trends in machine learning for time series modeling and
forecasting. Recently, there has been increasing interest in using neural
networks to model and forecast time series, particularly in addressing sea
level rise issues (Bruneau et al., 2020; Bruno & Afonso, 2021; Alenezi et
al,, 2023).

The primary purpose of this study was to demonstrate the role of time
series models in the prediction process and to analyze long-term records
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of monthly mean sea level at Ocean City, Maryland. Future directions in data-driven sea level forecasting aim to enhance model accuracy, integrate
diverse data sources, and provide more detailed and actionable predictions. These advancements will play a crucial role in helping coastal communities
and policymakers prepare for and respond to the challenges posed by rising sea levels.

Materials
According to the U.S. Census Bureau, the town has a total area of
36.37 square miles (94.20 km?), of which 4.41 square miles (11.42 km?)
Ocean City, officially the Town of Ocean City, is an Atlantic resort city  is land and 31.96 square miles (82.78 km®) is water. Ocean City is located
in Worcester County, Maryland, along the East Coast of the United States ~ on Fenwick Island, a barrier spit that encompasses Ocean City, as well
(Figure 1). Known for its beautiful beaches, bustling boardwalks, and lively ~ as South Bethany and Fenwick Island, Delaware. Ocean City’s southern
entertainment scene, Ocean City, Maryland, attracts millions of visitors ~ point is an inlet formed by the 1933 Chesapeake-Potomac hurricane.
annually, particularly during the summer months, making it a major ~ Rainfall and tides swelled the rivers and bays surrounding Ocean City
vacation destination. Ocean City’s history traces back to its origins as a  until the overflowing water cut a 50-foot crevasse from the bay to the
fishing village, evolving into a thriving resort town with a strong emphasis ~ ocean (Wikipedia: Ocean City, Maryland).
on family fun and entertainment (Wikipedia: Ocean City, Maryland).

Study Site
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Figure 1: Ocean City, Maryland, USA (Source: Map of Beaches in Maryland, adapted from: https://www.livebeaches.com/map-of-beaches-in-
maryland/)

Data Source

The long-term records of monthly mean sea level from August 2002 to February 2025 at Ocean City, Maryland, used for this study are available to
the public from NOAA Tides and Currents. The average monthly mean sea level was 0.1123 mm/year with a standard deviation of 0.0794 mm/year
(Minimum: -0.0880 mm/year, Maximum: 0.3590 mm/year, and Median: 0.1123 mm/year) at Ocean City, Maryland, from August 2002 to February 2025.

According to NOAA Tides and Currents, the term “mean sea level” can refer to a tidal datum, which is locally derived based on observations at a tide
station and is typically computed over a 19-year period, known as the National Tidal Datum Epoch (NTDE). Tidal datum forms the basis of marine
boundaries, can be used as a vertical reference plane in producing nautical charts, and provides important baseline information for observing changes
in sea level over time. Mean sea level as a tidal datum is computed as the mean of hourly water level heights observed over 19 years. Monthly means
generated in the datum calculation process are used to generate the relative local sea level trends observed at a tide station.
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Figure 2: Time Series Plot of Monthly Mean Sea Level at Ocean City, Maryland, August 2002 ~ February 2025 (Source: R Output)
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Method
forecast Hybrid

The “forecastHybrid” package in R provides convenient functions for
ensemble time series forecasts. It allows users to build composite models
using multiple individual component models from the “forecast” package.
Forecasts generated from auto.arima(), ets(), nnetar(), tbats(), thetam(),
and stlm() can be combined with equal weights or cross-validated weights
(Perone, 2022).

ARIMA (AutoRegressive Integrated Moving Average) combines
autoregressive (AR), differencing (I), and moving average (MA)
components. It is particularly suitable for univariate time series
forecasting, especially when the data exhibits trends and seasonality. One
ofits strengths is its effectiveness for non-stationary data after differencing,
making it widely used and well-understood in the field. However, ARIMA
requires manual tuning of its parameters (p, d, q), which can make it
complex to implement.

ETS (Error, Trend, Seasonal) incorporates error, trend, and seasonal
components, offering options for additive or multiplicative models. It is
particularly suitable for time series data with clear seasonal patterns. One
of its strengths is its flexibility, as it can handle various types of seasonality
and trends, and it features automatic model selection. However, ETS
can be computationally intensive and may not perform well with very
irregular data.

NNETAR (Neural Network Time Series) utilizes feed-forward neural
networks with lagged inputs for forecasting. It is particularly suitable for
capturing nonlinear relationships in univariate time series data. One of its
strengths is its ability to model complex patterns and interactions, making
it adaptable to various data types. However, NNETAR requires significant
computational resources, and the results can vary due to randomness in
the training process.

TBATS (Trigonometric, Box-Cox, ARMA, Trend, Seasonal)
incorporates trigonometric seasonality, Box-Cox transformation, ARMA
errors, trend, and seasonal components. It is ideal for time series data with
complex seasonal patterns and long seasonal cycles. One of its strengths
is its ability to handle multiple seasonal periods and complex seasonality,
making it robust to outliers. However, TBATS is computationally
demanding and slower to fit compared to simpler models.

TEHTAM (Technology Acceptance Model) focuses on perceived
usefulness and ease of use to predict technology acceptance. Unlike
time series models, TEHTAM is used to understand user acceptance
of technology. Its strengths lie in providing valuable insights into user
behavior and technology adoption. However, it is not applicable for
forecasting time series data.

STLM (Seasonal-Trend decomposition using Loess) decomposes time
series data into seasonal, trend, and remainder components using Loess
smoothing. It is particularly suitable for time series with strong seasonal
and trend components. One of its strengths is its flexibility and robustness
to outliers, and it can be combined with other forecasting methods.
However, STLM requires careful selection of smoothing parameters and
can be sensitive to noise.

Neural Network Autoregression (NNAR) Models

Feed-forward neural networks with a single hidden layer and lagged
inputs, also known as Neural Network Autoregression (NNAR) models,
are commonly used for forecasting univariate time series (Zhang et al.,
1998). These models treat lagged values of the time series as inputs, similar
to autoregressive (AR) models, but use a non-linear function (the hidden
layer) to predict the next value (Tealab, 2018). NNAR models can be
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adapted to seasonal time series by including lagged values from previous
seasons as inputs.

NNAR is a type of autoregressive model where neural networks are
used to learn the non-linear relationships between past and future values
in a time series. The equation of NNAR can be expressed as follows:

h P
V.= ap+ Z ) fEZ PVt By)t &
j= =

In this equation, (where fij=0,1,2,...,nandj=1,2,...,h)and qj
(where j=0, 1,2, ..., h) are weight in the model. The notation p represents
the number of neurons in the input layer, and h represents the number of
neurons in the hidden layer.

This autoregressive neural network uses a single hidden layer, and the
results of weighted linear combinations are modified into artificial neural
network output using non-linear functions. The linear combination
function can be written as follows:

5= IBD}' + E?=1J'9:'_;" Ye—i

Here, Zj is the sum function of the bias unit to j in the hidden layer,
By; is the weight of the bias unit to j, B, is the weight of i. in the layer to j,
and B, is the input to i. The network activation function is a non-linear
function in the form of a binary sigmoid function, written as follows:

The equation above is a function of z; this sigmoid function is a part of
the activation function in the single-layer network model (Daniyal et al.,
2022; Almarashi et al., 2024; Hightower et al., 2024).

Outputis denoted by NNAR(p,k), where p denotes the number of lagged
values used as inputs, and k denotes the number of hidden nodes. For
example, a NNAR(13,7) model is a neural network with the last thirteen
observations (y, , ¥, ,» ---» ¥, ,,) used as inputs for forecasting the output
yt, and with seven neurons in the hidden layer. A NNAR (p,0) model is
equivalent to an ARIMA (p,0,0) model, but without the restrictions on the
parameters to ensure stationarity.

If the dataset is seasonal, the notation is similar: NNAR(p,Pk) where P
denotes the number of seasonal lags. P is chosen based on the information
criterion, like AIC. For example, an NNAR(3,1,2)[12] model has inputs

Ytrl’ yt—2’ yt—} and

Y., and two neurons in the hidden layers. More generally, an NNAR
(p,Pk) [m] model has inputs (yH, Vep oo Yoy Yow Yoo o yt—Pm) and k
neurons in the hidden layer. A NNAR (p,P,0)[m] model is equivalent to
an ARIMA (p,0,0) (P,0,0) [m] model but without the restrictions on the
parameters that ensure stationarity.

Model Evaluation Metrics

Five model evaluation metrics were employed to assess model accuracy
and determine the best-fit time series model. The Mean Error (ME) was
used to measure bias, indicating whether the model systematically over- or
under-predicts the actual values. The Root Mean Squared Error (RMSE)
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penalized large errors, making it particularly sensitive to significant
deviations between predicted and actual values.

Additionally, the Mean Absolute Error (MAE) provided insight into the
average magnitude of forecast errors, offering a straightforward measure
of accuracy. The Mean Percentage Error (MPE) was applied to evaluate
bias in percentage terms, helping to understand whether the model tends
to overestimate or underestimate in relative terms.

Lastly, the Mean Absolute Percentage Error (MAPE) was used to assess
overall forecast accuracy, ensuring a robust evaluation of the models
predictive performance. These model evaluation metrics provide insights
into model accuracy, bias, and forecasting reliability. The lower the values,
the better the model’s predictive accuracy (Perone, 2022; Daniyal et al,,
2022; Almarashi et al., 2024; Hightower et al., 2024).

© Yeong Nain Chi, at al.

Results

Decomposing a seasonal time series involves separating the time
series into a trend component, a seasonal component, and an irregular
component. The function decompose() in R can be applied to separate
these components of a seasonal time series. The plots in Figure 3 show
the original time series (top), the estimated trend component (second
from top), the estimated seasonal component (third from top), and the
estimated irregular component (bottom). The estimated trend component
shows a steady increase over time, and the estimated seasonal component
clearly displays seasonality, with a recurring pattern occurring once every
12 months (yearly).

]

Decomposition of additive time series

Figure 3: Decomposition of Monthly Mean Sea Level at Ocean City, Maryland, August 2002 ~ February 2025 (Source: R Output)

To ensure reproducibility of results, the set.seed() function was used
before building time series forecasting models with auto.arima(), ets(),
nnetar(), tbats(), thetam(), and stlm(). These models were then combined
with equal weights to maintain a balanced influence. The accuracy of time
series forecasting was measured using five evaluation metrics: ME (Mean

Error), RMSE (Root Mean Squared Error), MAE (Mean Absolute Error),
MPE (Mean Percentage Error), and MAPE (Mean Absolute Percentage
Error), as shown in Table 1.

Table 1. Model Comparison with Equal Weights Using Whole Data

Model ME RMSE MAE MPE MAPE
ALL 0.0019 0.0464 0.0362 22.0105 80.1503
ARIMA(0,1,2)(0,0,1)[12] 0.0028 0.0549 0.0433 32.6959 99.5376
ETS(A,N,N) 0.0011 0.0563 0.0442 28.9727 102.0032
NNAR(24,1,12)[12] 2.35e-05 0.0011 0.0006 -0.0911 1.2191
THETAM -0.0015 0.0577 0.0454 27.8751 104.4574
TBATS 0.0048 0.0554 0.0431 31.5363 97.9432
STLM 0.0008 0.0529 0.0417 27.2736 96.1549
Hybrid (ARIMA x ETS) 0.0019 0.0552 0.0434 30.8343 100.3814
Hybrid (ARIMA x NNAR) 0.0018 0.0284 0.0224 15.5025 49.0385
Hybrid (ARIMA x TBATS) 0.0038 0.0548 0.0429 32.1161 97.5751
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Hybrid (ARIMA x THETAM) 0.0006 0.0555 0.0436 30.2855 101.2597
Hybrid (ARIMA x STLM) 0.0018 0.0527 0.0413 29.9847 96.3022
Hybrid (ETS x NNAR) 0.0008 0.0293 0.0229 12.9262 50.6615
Hybrid (ETS x TBATS) 0.0030 0.0556 0.0434 30.2545 98.9815
Hybrid (ETS x THETAM) -0.0002 0.0566 0.0445 28.4239 102.9636
Hybrid (ETS x STLM) 0.0010 0.0541 0.0423 28.1231 98.1489
Hybrid (NNAR x TBATS) 0.0032 0.0286 0.0222 14.3976 47.9376
Hybrid (NNAR x THETAM) -0.0007 0.0299 0.0235 12.0620 51.7234

Based on the comparison of various forecasting models, it is evident
that the NNAR (24,1,12)[12] model stands out as the most accurate and
reliable (Figure 5). This model consistently achieved the lowest error
metrics across all categories, including ME, RMSE, MAE, MPE, and
MAPE. Its performance is particularly noteworthy in terms of RMSE and
MAE, where it significantly outperformed other models, indicating its
high precision in forecasting.

Hybrid models (Zhang, 2003) that incorporate NNAR also
demonstrated strong performance, especially Hybrid (NNAR x STLM)
and Hybrid (NNAR x TBATS). These models leveraged the strengths of
NNAR and other methods to achieve lower error rates, making them viable
options for accurate forecasting. The combination of NNAR with STLM,
in particular, showed promising results with low RMSE and MAE values,
suggesting that hybrid approaches can enhance forecasting accuracy.

One of the main objectives of decomposition is to estimate seasonal
effects that can be used to create and present seasonally adjusted values.
Seasonal adjustment involves removing seasonal effects that are not
explainable by the dynamics of trends or cycles from a time series to
reveal certain non-seasonal features. This can be done by subtracting

On the other hand, models like ETS(A,N,N) and THETAM exhibited
higher error metrics, indicating less reliability in their forecasts. While
these models may still be useful in certain contexts, their higher error rates
suggest that they may not be the best choice for applications requiring
high precision.

In conclusion, the NNAR model and its hybrid variations offer the best
overall performance for forecasting, with significantly lower error metrics
compared to other models. These findings highlight the importance
of selecting models that balance accuracy and reliability, especially in
fields where precise forecasting is crucial. Comparison underscores the
potential of hybrid models to improve forecasting accuracy by combining
the strengths of different approaches.

the estimated seasonal component from the original time series. After
removing the seasonal variation, the seasonally adjusted time series
contains only the trend component and an irregular component (Figure
4).
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Figure 4: Time Series Plot of Seasonal Adjusted Monthly Mean Sea Level at Ocean City, Maryland, August 2002 ~ February 2025 (Source: R
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Forecasts from NNAR(24,1,12)[12]

Figure 5: Time Series Forecasting Model of NNAR(24,1,12)[12] (Source: R Output)
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Discussion and Conclusion

The importance of sea level forecasting cannot be overstated. It plays
a vital role in protecting lives, preserving ecosystems, and ensuring
sustainable development in coastal regions. By leveraging advanced time
series models and integrating data from various sources, scientists and
policymakers can better anticipate and respond to the challenges posed
by rising sea levels.

Accurate forecasts enable early warning systems and disaster
preparedness, allowing communities to respond effectively to impending
floods. Additionally, forecasting aids in designing resilient structures and
retrofitting existing infrastructure to withstand future sea level changes.
It plays a vital role in environmental conservation by protecting critical
habitats such as wetlands, mangroves, and coral reefs, and supporting
restoration projects.

Policymakers rely on sea level forecasts to make informed decisions
about land use, zoning, and coastal development, ensuring sustainable
development. Furthermore, sea level forecasting drives scientific research
and innovation, leading to improved predictive models and technological
advancements. Overall, sea level forecasting is essential for protecting
lives, preserving ecosystems, and ensuring sustainable development in
coastal regions.

In this study, the NNAR (24,1,12)[12] model demonstrated the best
overall performance with the lowest error metrics across all categories,
making it the most accurate and reliable forecasting model. Hybrid models
that combine NNAR with other methods, such as STLM and TBATS,
also showed strong performance. These models leverage the strengths of
multiple approaches to achieve lower error rates and enhance forecasting
accuracy. ETS(A,N,N) and THETAM models exhibited higher error
metrics, indicating less reliability in their forecasts compared to NNAR
and hybrid models.

The superior performance of NNAR and hybrid models suggests that
neural network-based and hybrid approaches can provide highly accurate
forecasts, which can benefit various domains such as finance, supply chain
management, and strategic planning. Overall, the NNAR model and its

hybrid variations offer the best forecasting accuracy, highlighting the
potential of advanced machine learning techniques and hybrid approaches
in improving forecasting reliability.

The future of data-driven sea level forecasting is promising, with
several innovative approaches and advancements on the horizon. One key
area of focus is the integration of advanced machine learning techniques,
such as Long Short-Term Memory (LSTM) models, which have shown
superior performance in forecasting sea level rise. Researchers are
working on refining these models further to enhance their accuracy
and computational efficiency. Another promising approach is the use of
synthetic data to augment real-world datasets, which helps in training
models more effectively, especially when historical data is limited.

Addressing uncertainty in sea level forecasts is crucial, and future
research focuses on developing methods to quantify and reduce uncertainty
using probabilistic models and ensemble forecasting techniques. Real-
time monitoring and forecasting advancements will enable more timely
and accurate sea level forecasts by integrating real-time data from sensors
and satellite observations with predictive models. Finally, developing
decision support systems that utilize advanced forecasting models can aid
policymakers in making informed decisions, providing actionable insights
and recommendations based on the latest sea level predictions. These
advancements will play a crucial role in helping coastal communities and
policymakers prepare for and respond to the challenges posed by rising
sea levels.
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