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Abstract
This study looks at how robotics and artificial intelligence systems can work better through comprehensive sensor-based data analysis and predictive modeling. 

This research examines three important sensor parameters (Sensor 1, Sensor 2, and Sensor 3) and their combined impact on system performance indices in AI and 
robotics applications. Using a dataset of 30 observations, we used two It is possible to use machine learning techniques such as random forest regression and linear 
regression to predict and analyze the performance effects. The analysis reveals that Sensor 1 shows the strongest positive correlation with the performance index (r 
= 0.65), followed by Sensor 2 (r = 0.57), while Sensor 3 shows the weakest correlation (r = -0.043). The linear regression achieved an R² it was 0.92 in the training 
data, but dropped to 0.65 in the test data, indicating potential overfitting concerns. 

Random forest regression showed excellent training performance with an R² of 0.97, however, the testing performance decreased to 0.53, indicating challenges 
in model complexity. Descriptive analysis showed that sensor 1 (mean = 49.47, SD = 25.42) showed the highest variability, while sensor 3 (mean = 10.16, SD = 
5.64) showed the most consistent measurements. Performance indices ranged from 8.43 to 76.21, with a mean of 47.11. Correlation heat map analysis confirms 
the independence of sensor measurements, ensuring minimal multi collinearity. These findings have significant implications for AI and robotics system design, 
highlighting the importance of prioritizing certain sensor inputs for optimal performance prediction. This research contributes to understanding how multiple 
sensor parameters interact to determine overall system performance and provides a framework for performance optimization in intelligent automation systems.
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Introduction
Automation, robotics, artificial intelligence, and machine learning 

form the theoretical foundation for research on robotics and AI. These 
technologies can serve as both independent and dependent variables 
in this body of work. [2] Although academic research on intelligent 
automation – including robotics and artificial intelligence – is growing 
rapidly, little is known about how these technologies impact human 
resource management (HRM) for both workers and businesses. [3] While 
traditional robots are intended to be general-purpose machines, the fact 
that building robots that can perform a variety of tasks is still expensive 
emphasizes the need for intelligent robots. [4] Robotics and artificial 
intelligence have evolved separately over time. 

While robot cists, with backgrounds in mechanical and electrical 
engineering, specialize in sensory-based tasks, artificial intelligencescholars 
have focused on algorithms and abstraction issues. [5] Early technological 
advances, despite their initial setbacks, freed humans from repetitive, 

mundane tasks. Self-driving cars, FDA-approved surgical robots, 
and artificial intelligence (AI) systems that mimic disruptive human 
behavior, “trigger-inducing” ways are just a few examples of cutting-
edge technologies that society is still struggling to integrate decades 
later. [6] In addition to issues of ownership, governance, and regulation, 
Legislators should immediately enact evidence-based policies to address 
advances in robotics and AI. Many repetitive, productive tasks previously 
completed by people have already been automated. [7] Incorporating AI 
into regional anesthesia will require a revolutionary approach to patient 
data management. 

This includes collecting and integrating digital photographs, 
prescription databases, shortage codes, cancer databases, surgical 
outcome registries, and preoperative records. [8] The development and 
use of robotic surgery is closely linked to advances in artificial intelligence. 
Urology is at the forefront of advances in laparoscopic surgery, and robotics 
is used for nephrectomy, prostatectomy, and cystectomy. Previous research 
on robotic surgery perceptions and patient comfort provides important 
information about how the general public perceives AI in healthcare.[9] 
Through a review of the literature and analysis of stakeholder requests, 
three key areas of strategic interest were identified: artificial intelligence 
(AI), robotics, and the Internet of Things (IoT). These technologies 
are critical to the growth of the global economy as well as to safety and 
security. [10] The goal of efficiency is consistent with artificial intelligence, 
which differs from previous developments in that it automates cognitive 
processes as opposed to manual ones. AI enables computational tasks to 
be performed more quickly and smoothly due to advances in computer 
science and the digital revolution.[11] Many of these ethical issues are 
already having an impact on society, and many more are on the horizon, 
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even if some seem futuristic and unrelated to common technologies such 
as touchscreen ordering systems, self-checkout kiosks, and automated 
teller machines. [12] As a result of the rapid as a result of the development 
of digital technologies, including digital communication, infrastructure, 
and new innovations, many aspects of social life are changing, including 
human interactions, labor, behavior, and production and consumption. 

The transition to “smart cities” is facilitated by ICT developments 
that create new opportunities for more efficient and integrated urban 
management. [13] It has been found that robotics scenarios require more 
technical development and time before they can be used to help special 
education students from all three technologies. This is because modern 
applications are more likely to be found in non-traditional industries 
such as manufacturing. [14] In addition, several additional European 
research groups, both within the EU and outside EU-funded projects, 
are contributing significantly to the AI-robotics synergy. However, the 
scope of European efforts in this area is not well captured, as robotics has 
a limited focus on advisory capabilities. [15] With regular interactions, 
these self-learning and real-time question-and-answer robots can become 
better at answering questions. [16] The integration of robotics and artificial 
intelligence (AI) is rapidly emerging as a key component in creating 
new markets, innovative technologies, and improved performance in 
previously established technologies businesses. [17] Artificial intelligence 
and robotics demonstrate the potential for computer awareness, cognition, 
and reasoning. The development The use of modern technologies has 
generated a debate about their eligibility for rights, but these rights can 
only be taken into account in the contextthe duties and obligations that 
go with them.

Materials and Method
Materials: 

Sensor 1: Sensor 1 refers to a numerical input variable that captures 
primary measurements from the environment or internal processes of 
an AI or robotic system. It may reflect physical data such as distance, 
temperature, or pressure, depending on the application. This parameter 
is essential because it provides fundamental information that contributes 
to the system’s perception, decision-making, and adaptive responses. 
By analyzing Sensor 1, performance models can evaluate how initial 
conditions affect robotic control, accuracy, and performance.

Sensor 2: Sensor 2 is a numerical input parameter designed to record 
secondary system or environmental properties related to AI and robotics. 
It may represent variables such as speed, vibration, load, or force, 
depending on the environment. This sensor complements Sensor 1 by 
providing additional dimensions of operational data. Incorporating Sensor 
2 improves the robustness of the models, enabling accurate predictions 
and adaptive strategies. Together with other inputs, Sensor 2 significantly 
influences the calculation and interpretation of system performance.

Sensor 3: Sensor 3 is another input variable that provides important 
supplementary numerical data for improving robotic and AI operations. 
It can capture features such as orientation, energy consumption, angular 
position, or localized environmental factors. Sensor 3 enriches the dataset 
by adding depth and variation to the inputs, improving prediction 
accuracy. Its contribution helps identify complex interactions between 
multiple signals. By incorporating Sensor 3, AI and robotics models 
gain resilience, which helps them adapt effectively to various operational 
conditions.

Performance Index: The performance index is a numerical output 
variable derived from the inputs of Sensor 1, Sensor 2, and Sensor 3. 
It reflects the overall performance, accuracy, or efficiency of an AI or 
robotic system under given conditions. This index combines various 

sensor measurements into a single evaluation metric. By monitoring and 
analyzing the performance index, researchers and engineers can identify 
system strengths, detect inefficiencies, and develop optimization strategies 
for improved performance and intelligent decision-making.

Optimization techniques

Linear Regression: A statistical method used a valuable technique 
to predict quantitative outcomes and has been extensively studied in 
numerous textbooks over time. Although it may seem less exciting than 
modern statistical learning methods, it is widely used and very relevant. 
In addition, it serves as a foundation for more advanced techniques, as 
many sophisticated statistical learning methods can be seen as extensions 
or generalizations of linear regression. Therefore, a solid understanding of 
linear regression is essential before exploring more complex approaches. 
The fundamental ideas of linear regression are examined in this chapter, 
along with the least squares method commonly used to build a model. 
Regression serves two primary purposes. First, it is widely used for 
forecasting and prediction, often with significant overlap with machine 
learning applications. With regression analysis, the dependent variable 
‘y’ is predicted based on different values of the independent variables. 
The variable ‘x’. This paper focuses on linear regression and multivariate 
regression, both of which are well suited for predictive modelling. 
Regression can take the form of simple linear regression or multiple 
regression, which can be a type a regression. Simple linear regression 
involves a model with a single independent variable to determine its effect 
on a dependent variable. It is represented by the equation y = β₀ + β₁ x + ε, 
which describes the relationship between the variables. In addition, simple 
regression helps to distinguish the influence of independent variables as 
distinguished from the interactions between dependent variables.

Random Forest Regression: A useful supervised machine learning 
technique is random forest regression method used for predictive 
modelling. This method involves training several decision trees on various 
dataset subsets and their outputs are averaged to improve the prediction 
accuracy of the method, not only improving performance but also reducing 
the computational burden associated with training, storing, and predicting 
with many individual models. Due to their efficiency, random forests are 
extremely helpful for jobs involving regression, where continuous values 
are usually predicted. A “forest” of several independently built decision 
trees is created using the random forest technique, using the ultimate 
forecast derived by averaging each tree’s outputs. By exposing each tree to 
slightly different data, this approach helps to reduce variance and increase 
the over fitting, ultimately improving the generalizability of the model.

Analysis and Discussion

Table 1. Artificial Intelligence and Robotics

Sensor1 Sensor2 Sensor3 Performance Index

43.708611 32.339518 8.3848685 48.898525

95.564288 12.673586 6.1556316 55.83696

75.879455 7.9273217 16.746013 51.529182

63.879264 47.699849 7.7783132 76.20631

24.041678 48.453441 6.3377557 48.463865

24.039507 41.377881 11.311226 52.705647

15.227525 18.70762 3.6775603 8.4323559

87.955853 9.3952451 16.241743 60.559399

64.100351 35.790486 2.4164622 57.554913

73.726532 24.806862 19.750852 58.401762

11.852604 10.491721 15.672651 19.339444
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97.291887 27.282961 4.7755979 58.934633

84.919838 6.5474835 1.1049202 46.324156

29.11052 45.919418 16.493767 54.078679

26.364247 16.645099 14.43029 36.932282

26.506406 34.813503 14.851136 39.612417

37.381802 19.026998 15.654137 32.850315

57.228079 28.403061 2.4068484 45.848292

48.875052 29.601963 7.8108488 52.090735

36.210623 13.318451 3.2015121 30.033654

65.066761 48.631308 17.398965 69.953364

22.554447 39.880977 12.842664 46.016662

36.293018 47.277452 7.2870625 54.700269

42.972566 45.267231 2.2076087 58.412437

51.046299 31.905499 6.9086641 46.401731

80.665837 46.484341 7.1784831 74.106245

27.97064 8.9821626 14.862517 23.915186

56.281099 13.819229 13.113592 35.075252

63.317311 7.035228 17.857042 44.708625

14.180537 19.639865 9.9720836 25.399045

Table 1 presents a dataset that demonstrates the relationship between 
sensor-based input variables – sensor1, sensor2, and sensor3 – and a 
single output measure, the performance index. Each row represents 
an observation that the sensor measurements collectively affect the 
performance of an artificial intelligence or robotic system. The variation 
in the rows highlights how different combinations of inputs contribute 
to the system’s performance and accuracy. Sensor1 typically records high 
values, often ranging from 40 to 95 in many cases. This parameter seems 
to provide a strong underlying influence on the performance index. 
For example, when Sensor1 values are high, such as 95.56 or 97.29, the 
performance index is also elevated, reaching 55.83 and 58.93, respectively. 

This indicates that Sensor1 represents a central measurement, which can 
be linked to the underlying processing or primary operating conditions of 
the system.Sensor2 shows moderate variation, with values extending from 
approximately 7 to almost 49. It plays a complementary role, and higher 
Sensor2 values often correspond to an increased performance index. For 
example, if Sensor1 is 63.87 and Sensor2 is 47.70, the resulting performance 
index is 76.20—the highest in the dataset. This suggests that Sensor2 may 
capture a supporting or confirming aspect of system performance. Sensor3 
represents a narrow range, but adds important variation, often amplifying 
or moderating the result. For example, relatively high Sensor3 values, such 
as 19.75, combined with medium-sized Sensor1 and Sensor2 values, yield 
a strong performance index of 58.40. Conversely, when all three inputs are 
low, such as Sensor1 at 15.22 and Sensor2 at 18.70, the performance index 
drops dramatically to 8.43. The dataset illustrates how the interaction 
between multiple sensor measurements determines the performance of 
AI and robotics systems. Higher values across sensors generally lead to 
stronger effects, while weaker input combinations significantly reduce 
system performance.

Table 2: Summarizes the statistical properties of the three input variables 
(Sensor1, Sensor2, Sensor3) and the output variable (performance index) for 
the 30 observations

Sensor1 Sensor2 Sensor3 Performance Index

Count 30 30 30 30

Mean 49.473754 27.338192 10.161027 47.110745

Std 25.416676 14.809696 5.637825 15.681151

Min 11.852604 6.547483 1.10492 8.432356

25% 26.872465 13.443645 6.201163 37.602316

50% 46.291831 27.843011 9.178476 48.681195

75% 64.825158 41.003655 15.456232 57.125425

Max 97.291887 48.631308 19.750852 76.20631

Table 2 summarizes the statistical properties of the three input variables 
(Sensor1, Sensor2, Sensor3) and the output variable (performance index) 
for the 30 observations. These statistics provide an overview of the central 
tendencies, variance, and ranges across the dataset. The mean value of 
Sensor1 is 49.47, with a standard deviation of 25.41, indicating that the 
measurements are widely spread and include both low (11.85) and very 
high (97.29) values. Sensor2 has a mean of 27.33 and a standard deviation 
of 14.80, indicating moderate variability across the observations. Sensor3 
averages 10.16 with a small spread (standard deviation of 5.63), indicating 
that its values are more tightly clustered compared to Sensor1 and 
Sensor2. The performance index, which combines all three sensor inputs, 
has a mean of 47.11 and a standard deviation of 15.68. This indicates 
that the system performance varies moderately but is generally centered 
around mid-range values. The lowest performance index recorded is 
8.43, while the highest is 76.20, showing significant differences in results 
depending on sensor conditions. The quartile values also show that half of 
the performance index results are between 37.60 and 57.12, emphasizing 
the system’s tendency toward mid-range performance with occasional 
extreme events.

Figure 3: Linear Regression PerformanceIndex (Training data)

Linear Regression

Figure 3 illustrates the predicted and actual values of the performance 
index using a linear regression model trained on the dataset. The scatter 
plot compares the predicted outcomes on the vertical axis to the actual 
observed values on the horizontal axis, with the dashed line representing 
the best-case scenario where the predictions match the observations 
perfectly. Most of the data points are close to the diagonal line, indicating 
that the model provides accurate predictions for most cases. This 
alignment demonstrates that the linear regression model has effectively 
captured the relationship between the sensor inputs (Sensor 1, Sensor 2, 
and Sensor 3) and the performance index. Points distributed tightly along 
the line indicate minimal error in the prediction, supporting the reliability 
of the regression fit. However, some deviations are visible, especially in 
the mid-range values, where the actual results are around 40–50. These 
small gaps indicate that although the model performs well overall, there 
are small underestimations or overestimations for some observations. 
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Figure 1: Scatter Plot of VariousArtificial Intelligence and Robotics

Figure 1 shows a scatterplot matrix with histograms for Sensor1, Sensor2, Sensor3, and the performance index. The histograms on the diagonal 
provide an overview of the distribution of each variable. Sensor1 shows a wide spread from the lowest to the highest values, indicating that its data is 
evenly distributed across the entire range. Sensor2 also shows a wide spread, but is more heavily clustered around mid-range values. In contrast, Sensor3 
shows a narrow spread with a higher concentration between 5 and 15. The performance index scatterplot map reveals that most values are centered in 
the mid-range, although some high-performance effects are also evident. Scatterplots reveal the extent of the relationships between the variables. The 
maps involving Sensor1 and the performance index show a visible upward trend, indicating that higher Sensor1 values are often associated with better 
performance. Although the spread of the points indicates variability, Sensor2 also shows some positive correlation with the performance index. However, 
Sensor3 does not show a clear linear relationship with the performance index, suggesting that its effect may be weak or nonlinear. Furthermore, the 
graphs between the sensors show weak or scattered relationships, indicating that each sensor measurement provides unique information rather than 
overlapping one another. This independence of inputs strengthens the model’s ability to capture different aspects of system performance.

Figure 2: Correlation Heat Map Depicting the Relationships Between Process Parameters and Response Variables

However, the absence of extreme outliers indicates the robustness and consistency of the model’s predictive ability. The figure highlights that linear 
regression is a suitable approach for modeling system performance in this case, with strong predictive alignment between actual and estimated values.
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Figure 4: Linear Regression PerformanceIndex (Testing data)

Figure 2 presents a correlation heat map illustrating the relationships between three input variables (Sensor1, Sensor2, Sensor3) and the output 
variable (performance index). The color scale ranges from –1 to +1, where positive values indicate direct relationships and negative values reflect inverse 
relationships. The analysis reveals that Sensor1 has a strong positive correlation with the performance index (0.65). This indicates that an increase 
in Sensor1 measurements is generally associated with improved system performance, making it the most influential parameter. Sensor2 also shows 
a meaningful positive correlation with the performance index (0.57), indicating its supporting role in improving outcomes. Together, Sensor1 and 
Sensor2 make a significant contribution to predicting the performance trends of the system. In contrast, Sensor3 shows a negligible correlation with the 
performance index (–0.043). This indicates that Sensor3 has little or no direct influence on overall performance, or its contribution may be nonlinear and 
not captured by simple correlations. The weak correlations between sensors (–0.12 to –0.19) indicate that each sensor provides independent information 
without significant overlap.The heat map highlights Sensor1 and Sensor2 as the main factors determining system performance in artificial intelligence 
and robotics applications, while Sensor3 plays only a minimal role. This finding reinforces the importance of prioritizing certain inputs for model 
development and system optimization.

Figure 4 illustrates the performance of the linear regression model by 
comparing the predicted performance index values from the test dataset 
with the actual values. The scatterplot has a diagonal dashed line that 
represents the ideal situation where the predicted values exactly match 
the actual values (i.e., the equality line, where predicted = actual). Each 
blue dot in the plot corresponds to a data point from the test dataset, 
its horizontal position represents the actual performance index and its 
vertical position shows the predicted value. In this figure, the plotted 
data points fall relatively close to the diagonal line, indicating that the 
linear regression model has made reasonably accurate predictions for the 
performance index. However, there is a significant deviation from the 
ideal line, indicating some error in the model’s predictions. For example, 
one point shows a predicted value that is significantly lower than the 
actual value, while another point is slightly above the diagonal line. These 
deviations highlight that while the model captures the general trend of the 
data, it is not completely accurate and can under- or over-predict in some 
cases. The limited number of data points indicates that the test dataset is 
small, which may limit the generalizability and robustness of the estimate. 
In addition, the relatively tight set of points indicates that the model’s 
predictions are consistent, although additional statistical evaluation 
(such as R² or RMSE) may be necessary to more accurately measure the 
accuracy of the model.

Figure 5: Random Forest RegressionPerformanceIndex (Training data)

Figure 5 presents a scatter plot comparing the predicted and actual 
PerformanceIndex values from the training dataset using the Random 
Forest Regression model. Each blue dot represents a training data 
instance, where the x-axis denotes the actual PerformanceIndex and the 
y-axis shows the corresponding predicted value. The dashed diagonal line 
serves as a reference line indicating perfect prediction i.e., where predicted 
values exactly match the actual values.From the figure, it is evident that 
the Random Forest model fits the training data very well. Most of the 
points lie very close to or directly on the diagonal line, indicating minimal 
error in predictions. This alignment suggests a high level of accuracy 
and that the model has successfully captured the underlying patterns in 
the training dataset. The tight clustering of points around the ideal line 
across the entire range of PerformanceIndex values from lower to higher 
also demonstrates the model’s strong capability to generalize within 
the training set.However, while this near-perfect fit on training data is 
encouraging, it may also raise concerns about overfittinga common issue 
with ensemble models like Random Forests. Overfitting occurs when 
a model learns the training data too well, including noise and outliers, 
which can negatively impact its ability to generalize to unseen (test) data. 
Therefore, while Figure 5 confirms excellent training performance, it must 
be interpreted alongside testing performance metrics to assess the model’s 
overall reliability and generalization power.

Table 3. Performance Metrics of Linear Regression Performance Index (Training, Testing Data)

Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE

Train LR 0.92157 0.92157 19.75253 4.44438 3.35976 11.97147 0.03103 2.10082

Test LR 0.64880 0.69826 35.84826 5.98734 5.92230 7.14491 0.01873 5.51301
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Table 4 provides an in-depth comparison of the performance metrics of the Random Forest Regression (RFR) model on both the training and testing 
datasets. On the training data, this model shows excellent performance, with an R² value of 0.97354 and an Explained Variance Score (EVS) of 0.97356, 
indicating that the model explains more than 97% of the variance in the performance index. The error metrics are correspondingly low, with a mean 
square error (MSE) of 6.66, a root mean square error (RMSE) of 2.58, and a mean absolute error (MAE) of 2.06. These values suggest highly accurate 
predictions during training. Furthermore, the maximum error is 6.61, and both the mean square log error (MSLE) and mean absolute error (MedAE) 
are low at 0.01335 and 1.81, respectively, confirming the accuracy of the model and minimal deviation from the true values. However, the performance 
of the model decreases significantly when applied to the test data. The R² score drops to 0.53269, showing that only about 53% of the variation in the 
test set is captured, indicating low predictive power in the missing data. The EVS also drops to 0.58111, and the error metrics increase significantly—the 
MSE increases to 47.70, the RMSE to 6.91, and the MAE to 6.86. The mean absolute error more than triples to 6.95, and although the maximum error 
(7.83) and MSLE (0.02290) are within acceptable limits, the overall increase in error indicates that the model may overestimate the training data. This 
observation is consistent with the scatter plots in Figures 5 and 6, where nearly perfect training predictions contrast with less accurate test predictions.

Figure 6: Random Forest RegressionPerformanceIndex (Testing data)

Figure 6 presents the performance of the random forest regression 
model by plotting the predicted values against the actual performance 
index values on the test dataset. The dashed diagonal line represents the 
best case where the predictions match the actual results perfectly. The 
three blue dots correspond to the test cases. Although the sample size for 
testing may seem small (only three data points), the dots are relatively 
close to the diagonal line, indicating that the model made very accurate 
predictions on the test set. The proximity of these dots to the line indicates 
low prediction error and good generalization, at least for the limited test 
data provided. Unlike typical scatter plots with large datasets, the scatter 
distribution here limits the ability to draw broad statistical conclusions. 
However, based on visual evidence, the model’s performance on the test 
data is consistent with its training performance, as shown in Figure 5. 
This is a positive sign, indicating that the random forest model may have 
avoided overfitting, a common pitfall with such models. However, caution 
is warranted as the size of the experimental dataset is very small, making 
it difficult to rigorously assess the robustness and reliability of the model. 
A more comprehensive test with a larger dataset would be required to 
confidently assess the predictive power of the model. However, based on 
this number, the random forest regression model demonstrates promising 
generalization ability to predict performance index in unobserved data.

Conclusion
This comprehensive study on AI and robotics performance 

optimization through sensor-based predictive modeling has provided 
significant insights into the complex relationships between multiple input 
parameters and system performance outcomes. Research successfully 
demonstrates that sensor measurements can serve as reliable predictors 
of AI and robotics system performance, with varying degrees of influence 
and correlation strength.The analytical results reveal a clear hierarchy of 

sensor importance, with Sensor 1 emerging as the primary determinant 
of system performance, exhibiting a strong positive correlation of 0.65 
with the performance index. This finding indicates that Sensor 1 captures 
the fundamental operational characteristics that directly affect system 
performance and accuracy. Sensor 2, although of secondary importance, 
still maintains a meaningful positive correlation of 0.57, indicating its 
supporting role in performance improvement. In contrast, the negligible 
correlation of Sensor 3 highlights that not all measured parameters 
contribute equally to system outcomes, emphasizing the need for selective 
feature prioritization in AI and robotics applications.Comparative 
analysis between linear regression and random forest regression models 
provides valuable insights into the trade-offs between model complexity 
and generalization ability. 

Although random forest regression achieves better training 
performance (R² = 0.97), its significant performance drop (R² = 0.53) 
on test data compared to linear regression (R² = 0.65) underscores the 
importance of model validation and the dangers of overfitting complex 
ensemble methods. This finding suggests that simpler models may 
sometimes provide better generalization for practical applications in AI 
and robotics systems.This research has practical implications for system 
designers and engineers working in the field of artificial intelligence 
and robotics. Identifying key sensor parameters enables more efficient 
resource allocation, focusing measurement and computational efforts 
on the variables that have the most impact. This approach can lead to 
more cost-effective system designs without compromising performance 
quality.Furthermore, this study contributes to a broader understanding 
of performance optimization in intelligent automated systems. The 
framework developed here can be adapted and extended to various AI 
and robotics applications, from manufacturing automation to healthcare 
robotics, providing a systematic approach to performance prediction and 
system optimization.Future research directions should focus on expanding 
the dataset size to improve model robustness, exploring nonlinear 
relationships between sensors and performance, and exploring the 
integration of additional environmental variables that may affect system 
performance. In addition, real-time implementation studies will confirm 
the practical applicability of these predictive models in operational AI and 
robotics environments.
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