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Abstract

This study looks at how robotics and artificial intelligence systems can work better through comprehensive sensor-based data analysis and predictive modeling.
This research examines three important sensor parameters (Sensor 1, Sensor 2, and Sensor 3) and their combined impact on system performance indices in Al and
robotics applications. Using a dataset of 30 observations, we used two It is possible to use machine learning techniques such as random forest regression and linear
regression to predict and analyze the performance effects. The analysis reveals that Sensor 1 shows the strongest positive correlation with the performance index (r
=0.65), followed by Sensor 2 (r = 0.57), while Sensor 3 shows the weakest correlation (r = -0.043). The linear regression achieved an R? it was 0.92 in the training
data, but dropped to 0.65 in the test data, indicating potential overfitting concerns.

Random forest regression showed excellent training performance with an R? of 0.97, however, the testing performance decreased to 0.53, indicating challenges
in model complexity. Descriptive analysis showed that sensor 1 (mean = 49.47, SD = 25.42) showed the highest variability, while sensor 3 (mean = 10.16, SD =
5.64) showed the most consistent measurements. Performance indices ranged from 8.43 to 76.21, with a mean of 47.11. Correlation heat map analysis confirms
the independence of sensor measurements, ensuring minimal multi collinearity. These findings have significant implications for Al and robotics system design,
highlighting the importance of prioritizing certain sensor inputs for optimal performance prediction. This research contributes to understanding how multiple
sensor parameters interact to determine overall system performance and provides a framework for performance optimization in intelligent automation systems.
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Introduction

Automation, robotics, artificial intelligence, and machine learning
form the theoretical foundation for research on robotics and Al These
technologies can serve as both independent and dependent variables
in this body of work. [2] Although academic research on intelligent
automation - including robotics and artificial intelligence - is growing
rapidly, little is known about how these technologies impact human
resource management (HRM) for both workers and businesses. [3] While
traditional robots are intended to be general-purpose machines, the fact
that building robots that can perform a variety of tasks is still expensive
emphasizes the need for intelligent robots. [4] Robotics and artificial
intelligence have evolved separately over time.

While robot cists, with backgrounds in mechanical and electrical
engineering, specializein sensory-based tasks, artificial intelligencescholars
have focused on algorithms and abstraction issues. [5] Early technological
advances, despite their initial setbacks, freed humans from repetitive,
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mundane tasks. Self-driving cars, FDA-approved surgical robots,
and artificial intelligence (AI) systems that mimic disruptive human
behavior, “trigger-inducing” ways are just a few examples of cutting-
edge technologies that society is still struggling to integrate decades
later. [6] In addition to issues of ownership, governance, and regulation,
Legislators should immediately enact evidence-based policies to address
advances in robotics and AI. Many repetitive, productive tasks previously
completed by people have already been automated. [7] Incorporating AI
into regional anesthesia will require a revolutionary approach to patient
data management.

This includes collecting and integrating digital photographs,
prescription databases, shortage codes, cancer databases, surgical
outcome registries, and preoperative records. [8] The development and
use of robotic surgery is closely linked to advances in artificial intelligence.
Urology is at the forefront of advances in laparoscopic surgery, and robotics
is used for nephrectomy, prostatectomy, and cystectomy. Previous research
on robotic surgery perceptions and patient comfort provides important
information about how the general public perceives Al in healthcare.[9]
Through a review of the literature and analysis of stakeholder requests,
three key areas of strategic interest were identified: artificial intelligence
(AI), robotics, and the Internet of Things (IoT). These technologies
are critical to the growth of the global economy as well as to safety and
security. [10] The goal of efficiency is consistent with artificial intelligence,
which differs from previous developments in that it automates cognitive
processes as opposed to manual ones. Al enables computational tasks to
be performed more quickly and smoothly due to advances in computer
science and the digital revolution.[11] Many of these ethical issues are
already having an impact on society, and many more are on the horizon,
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even if some seem futuristic and unrelated to common technologies such
as touchscreen ordering systems, self-checkout kiosks, and automated
teller machines. [12] As a result of the rapid as a result of the development
of digital technologies, including digital communication, infrastructure,
and new innovations, many aspects of social life are changing, including
human interactions, labor, behavior, and production and consumption.

The transition to “smart cities” is facilitated by ICT developments
that create new opportunities for more efficient and integrated urban
management. [13] It has been found that robotics scenarios require more
technical development and time before they can be used to help special
education students from all three technologies. This is because modern
applications are more likely to be found in non-traditional industries
such as manufacturing. [14] In addition, several additional European
research groups, both within the EU and outside EU-funded projects,
are contributing significantly to the Al-robotics synergy. However, the
scope of European efforts in this area is not well captured, as robotics has
a limited focus on advisory capabilities. [15] With regular interactions,
these self-learning and real-time question-and-answer robots can become
better at answering questions. [16] The integration of robotics and artificial
intelligence (AI) is rapidly emerging as a key component in creating
new markets, innovative technologies, and improved performance in
previously established technologies businesses. [17] Artificial intelligence
and robotics demonstrate the potential for computer awareness, cognition,
and reasoning. The development The use of modern technologies has
generated a debate about their eligibility for rights, but these rights can
only be taken into account in the contextthe duties and obligations that
go with them.

Materials and Method
Materials:

Sensor 1: Sensor 1 refers to a numerical input variable that captures
primary measurements from the environment or internal processes of
an Al or robotic system. It may reflect physical data such as distance,
temperature, or pressure, depending on the application. This parameter
is essential because it provides fundamental information that contributes
to the system’s perception, decision-making, and adaptive responses.
By analyzing Sensor 1, performance models can evaluate how initial
conditions affect robotic control, accuracy, and performance.

Sensor 2: Sensor 2 is a numerical input parameter designed to record
secondary system or environmental properties related to Al and robotics.
It may represent variables such as speed, vibration, load, or force,
depending on the environment. This sensor complements Sensor 1 by
providing additional dimensions of operational data. Incorporating Sensor
2 improves the robustness of the models, enabling accurate predictions
and adaptive strategies. Together with other inputs, Sensor 2 significantly
influences the calculation and interpretation of system performance.

Sensor 3: Sensor 3 is another input variable that provides important
supplementary numerical data for improving robotic and Al operations.
It can capture features such as orientation, energy consumption, angular
position, or localized environmental factors. Sensor 3 enriches the dataset
by adding depth and variation to the inputs, improving prediction
accuracy. Its contribution helps identify complex interactions between
multiple signals. By incorporating Sensor 3, Al and robotics models
gain resilience, which helps them adapt effectively to various operational
conditions.

Performance Index: The performance index is a numerical output
variable derived from the inputs of Sensor 1, Sensor 2, and Sensor 3.
It reflects the overall performance, accuracy, or efficiency of an Al or
robotic system under given conditions. This index combines various
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sensor measurements into a single evaluation metric. By monitoring and
analyzing the performance index, researchers and engineers can identify
system strengths, detect inefficiencies, and develop optimization strategies
for improved performance and intelligent decision-making.

Optimization techniques

Linear Regression: A statistical method used a valuable technique
to predict quantitative outcomes and has been extensively studied in
numerous textbooks over time. Although it may seem less exciting than
modern statistical learning methods, it is widely used and very relevant.
In addition, it serves as a foundation for more advanced techniques, as
many sophisticated statistical learning methods can be seen as extensions
or generalizations of linear regression. Therefore, a solid understanding of
linear regression is essential before exploring more complex approaches.
The fundamental ideas of linear regression are examined in this chapter,
along with the least squares method commonly used to build a model.
Regression serves two primary purposes. First, it is widely used for
forecasting and prediction, often with significant overlap with machine
learning applications. With regression analysis, the dependent variable
‘y’ is predicted based on different values of the independent variables.
The variable X’ This paper focuses on linear regression and multivariate
regression, both of which are well suited for predictive modelling.
Regression can take the form of simple linear regression or multiple
regression, which can be a type a regression. Simple linear regression
involves a model with a single independent variable to determine its effect
on a dependent variable. It is represented by the equation y = o + f1 X + &,
which describes the relationship between the variables. In addition, simple
regression helps to distinguish the influence of independent variables as
distinguished from the interactions between dependent variables.

Random Forest Regression: A useful supervised machine learning
technique is random forest regression method used for predictive
modelling. This method involves training several decision trees on various
dataset subsets and their outputs are averaged to improve the prediction
accuracy of the method, not only improving performance but also reducing
the computational burden associated with training, storing, and predicting
with many individual models. Due to their efficiency, random forests are
extremely helpful for jobs involving regression, where continuous values
are usually predicted. A “forest” of several independently built decision
trees is created using the random forest technique, using the ultimate
forecast derived by averaging each tree’s outputs. By exposing each tree to
slightly different data, this approach helps to reduce variance and increase
the over fitting, ultimately improving the generalizability of the model.

Analysis and Discussion

Table 1. Artificial Intelligence and Robotics

Sensorl Sensor2 Sensor3 Performance Index
43.708611 32.339518 8.3848685 48.898525
95.564288 12.673586 6.1556316 55.83696
75.879455 7.9273217 16.746013 51.529182
63.879264 47.699849 7.7783132 76.20631
24.041678 48.453441 6.3377557 48.463865
24.039507 41.377881 11.311226 52.705647
15.227525 18.70762 3.6775603 8.4323559
87.955853 9.3952451 16.241743 60.559399
64.100351 35.790486 2.4164622 57.554913
73.726532 24.806862 19.750852 58.401762
11.852604 10.491721 15.672651 19.339444
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Table 1 presents a dataset that demonstrates the relationship between
sensor-based input variables - sensorl, sensor2, and sensor3 - and a
single output measure, the performance index. Each row represents
an observation that the sensor measurements collectively affect the
performance of an artificial intelligence or robotic system. The variation
in the rows highlights how different combinations of inputs contribute
to the system’s performance and accuracy. Sensor1 typically records high
values, often ranging from 40 to 95 in many cases. This parameter seems
to provide a strong underlying influence on the performance index.
For example, when Sensorl values are high, such as 95.56 or 97.29, the
performance index is also elevated, reaching 55.83 and 58.93, respectively.

This indicates that Sensor1 represents a central measurement, which can
be linked to the underlying processing or primary operating conditions of
the system.Sensor2 shows moderate variation, with values extending from
approximately 7 to almost 49. It plays a complementary role, and higher
Sensor2 values often correspond to an increased performance index. For
example, if Sensor1 is 63.87 and Sensor2 is 47.70, the resulting performance
index is 76.20—the highest in the dataset. This suggests that Sensor2 may
capture a supporting or confirming aspect of system performance. Sensor3
represents a narrow range, but adds important variation, often amplifying
or moderating the result. For example, relatively high Sensor3 values, such
as 19.75, combined with medium-sized Sensor1 and Sensor2 values, yield
a strong performance index of 58.40. Conversely, when all three inputs are
low, such as Sensor1 at 15.22 and Sensor2 at 18.70, the performance index
drops dramatically to 8.43. The dataset illustrates how the interaction
between multiple sensor measurements determines the performance of
AT and robotics systems. Higher values across sensors generally lead to
stronger effects, while weaker input combinations significantly reduce
system performance.

Table 2: Summarizes the statistical properties of the three input variables
(Sensorl, Sensor2, Sensor3) and the output variable (performance index) for
the 30 observations

Sensorl Sensor2 Sensor3 Performance Index
Count | 30 30 30 30
Mean 49.473754 27.338192 10.161027 47.110745

97.291887 27.282961 4.7755979 58.934633 Std 25.416676 14.809696 5.637825 15.681151
84.919838 6.5474835 1.1049202 46.324156 Min 11.852604 6.547483 1.10492 8.432356
29.11052 45.919418 16.493767 54.078679 25% 26.872465 13.443645 6.201163 37.602316

26.364247 16.645099 14.43029 36.932282 50% 46.291831 27.843011 9.178476 48.681195

26.506406 34.813503 14.851136 39.612417 75% 64.825158 41.003655 15.456232 57.125425

37.381802 19.026998 15.654137 32.850315 Max 97.291887 48.631308 19.750852 76.20631

57.228079 28.403061 2.4068484 45.848292 Table 2 summarizes the statistical properties of the three input variables

48.875052 29.601963 7.8108488 52.090735 (Sensorl, Sensor2, Sensor3) and the output variable (performance index)

36.210623 13.318451 32015121 30.033654 for the 3‘0 obseryatlons. These statistics provide an overview of the central
tendencies, variance, and ranges across the dataset. The mean value of

65.066761 48631308 17.398965 69.953364 Sensorl is 49.47, with a standard deviation of 25.41, indicating that the

22.554447 39.880977 12.842664 46.016662 measurements are widely spread and include both low (11.85) and very

36.293018 47.277452 7.2870625 54.700269 high (97.29) values. Sensor2 has a mean of 27.33 and a standard deviation

12972566 45067231 52076087 8412437 of 14.80, 1nd1cat1.ng moderate variability across t.he.observatlon.s. S.ensc.)r3
averages 10.16 with a small spread (standard deviation of 5.63), indicating

51.046299 31.905499 6.9086641 46401731 that its values are more tightly clustered compared to Sensorl and

80.665837 46.484341 7.1784831 74.106245 Sensor2. The performance index, which combines all three sensor inputs,

27.97064 8.9821626 14.862517 23.915186 has a mean of 47.11 and a stan.dard deviation of %5.68. This indicates

that the system performance varies moderately but is generally centered

56.281099 13.819229 13.113592 35.075252 . . .
around mid-range values. The lowest performance index recorded is

63.317311 7.035228 17.857042 44.708625 8.43, while the highest is 76.20, showing significant differences in results

14.180537 19.639865 9.9720836 25.399045 depending on sensor conditions. The quartile values also show that half of

the performance index results are between 37.60 and 57.12, emphasizing
the system’s tendency toward mid-range performance with occasional
extreme events.

Linear Regression
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Figure 3: Linear Regression Performancelndex (Training data)

Figure 3 illustrates the predicted and actual values of the performance
index using a linear regression model trained on the dataset. The scatter
plot compares the predicted outcomes on the vertical axis to the actual
observed values on the horizontal axis, with the dashed line representing
the best-case scenario where the predictions match the observations
perfectly. Most of the data points are close to the diagonal line, indicating
that the model provides accurate predictions for most cases. This
alignment demonstrates that the linear regression model has effectively
captured the relationship between the sensor inputs (Sensor 1, Sensor 2,
and Sensor 3) and the performance index. Points distributed tightly along
the line indicate minimal error in the prediction, supporting the reliability
of the regression fit. However, some deviations are visible, especially in
the mid-range values, where the actual results are around 40-50. These
small gaps indicate that although the model performs well overall, there
are small underestimations or overestimations for some observations.
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However, the absence of extreme outliers indicates the robustness and consistency of the model’s predictive ability. The figure highlights that linear
regression is a suitable approach for modeling system performance in this case, with strong predictive alignment between actual and estimated values.
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Figure 1: Scatter Plot of VariousAtrtificial Intelligence and Robotics

Figure 1 shows a scatterplot matrix with histograms for Sensorl, Sensor2, Sensor3, and the performance index. The histograms on the diagonal
provide an overview of the distribution of each variable. Sensor1 shows a wide spread from the lowest to the highest values, indicating that its data is
evenly distributed across the entire range. Sensor2 also shows a wide spread, but is more heavily clustered around mid-range values. In contrast, Sensor3
shows a narrow spread with a higher concentration between 5 and 15. The performance index scatterplot map reveals that most values are centered in
the mid-range, although some high-performance effects are also evident. Scatterplots reveal the extent of the relationships between the variables. The
maps involving Sensor1 and the performance index show a visible upward trend, indicating that higher Sensor1 values are often associated with better
performance. Although the spread of the points indicates variability, Sensor2 also shows some positive correlation with the performance index. However,
Sensor3 does not show a clear linear relationship with the performance index, suggesting that its effect may be weak or nonlinear. Furthermore, the
graphs between the sensors show weak or scattered relationships, indicating that each sensor measurement provides unique information rather than
overlapping one another. This independence of inputs strengthens the model’s ability to capture different aspects of system performance.
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Figure 2: Correlation Heat Map Depicting the Relationships Between Process Parameters and Response Variables
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Figure 2 presents a correlation heat map illustrating the relationships between three input variables (Sensorl, Sensor2, Sensor3) and the output
variable (performance index). The color scale ranges from -1 to +1, where positive values indicate direct relationships and negative values reflect inverse
relationships. The analysis reveals that Sensorl has a strong positive correlation with the performance index (0.65). This indicates that an increase
in Sensorl measurements is generally associated with improved system performance, making it the most influential parameter. Sensor2 also shows
a meaningful positive correlation with the performance index (0.57), indicating its supporting role in improving outcomes. Together, Sensorl and
Sensor2 make a significant contribution to predicting the performance trends of the system. In contrast, Sensor3 shows a negligible correlation with the
performance index (-0.043). This indicates that Sensor3 has little or no direct influence on overall performance, or its contribution may be nonlinear and
not captured by simple correlations. The weak correlations between sensors (-0.12 to -0.19) indicate that each sensor provides independent information
without significant overlap.The heat map highlights Sensor1 and Sensor2 as the main factors determining system performance in artificial intelligence
and robotics applications, while Sensor3 plays only a minimal role. This finding reinforces the importance of prioritizing certain inputs for model

development and system optimization.
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Figure 5: Random Forest RegressionPerformancelndex (Training data)

Figure 4 illustrates the performance of the linear regression model by
comparing the predicted performance index values from the test dataset
with the actual values. The scatterplot has a diagonal dashed line that
represents the ideal situation where the predicted values exactly match
the actual values (i.e., the equality line, where predicted = actual). Each
blue dot in the plot corresponds to a data point from the test dataset,
its horizontal position represents the actual performance index and its
vertical position shows the predicted value. In this figure, the plotted
data points fall relatively close to the diagonal line, indicating that the
linear regression model has made reasonably accurate predictions for the
performance index. However, there is a significant deviation from the
ideal line, indicating some error in the model’s predictions. For example,
one point shows a predicted value that is significantly lower than the
actual value, while another point is slightly above the diagonal line. These
deviations highlight that while the model captures the general trend of the
data, it is not completely accurate and can under- or over-predict in some
cases. The limited number of data points indicates that the test dataset is
small, which may limit the generalizability and robustness of the estimate.
In addition, the relatively tight set of points indicates that the models
predictions are consistent, although additional statistical evaluation
(such as R? or RMSE) may be necessary to more accurately measure the
accuracy of the model.

Figure 5 presents a scatter plot comparing the predicted and actual
Performancelndex values from the training dataset using the Random
Forest Regression model. Each blue dot represents a training data
instance, where the x-axis denotes the actual PerformanceIndex and the
y-axis shows the corresponding predicted value. The dashed diagonal line
serves as a reference line indicating perfect prediction i.e., where predicted
values exactly match the actual values.From the figure, it is evident that
the Random Forest model fits the training data very well. Most of the
points lie very close to or directly on the diagonal line, indicating minimal
error in predictions. This alignment suggests a high level of accuracy
and that the model has successfully captured the underlying patterns in
the training dataset. The tight clustering of points around the ideal line
across the entire range of Performancelndex values from lower to higher
also demonstrates the model’s strong capability to generalize within
the training set.However, while this near-perfect fit on training data is
encouraging, it may also raise concerns about overfittinga common issue
with ensemble models like Random Forests. Overfitting occurs when
a model learns the training data too well, including noise and outliers,
which can negatively impact its ability to generalize to unseen (test) data.
Therefore, while Figure 5 confirms excellent training performance, it must
be interpreted alongside testing performance metrics to assess the model’s
overall reliability and generalization power.

Table 3. Performance Metrics of Linear Regression Performance Index (Training, Testing Data)

Data Symbol R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Train LR 0.92157 0.92157 19.75253 4.44438 3.35976 11.97147 0.03103 2.10082
Test LR 0.64880 0.69826 35.84826 5.98734 5.92230 7.14491 0.01873 5.51301

Citation: Aka, V. P. K. (2023). Improving the Performance of Artificial Intelligence and Robotics Systems Through Comprehensive Sensor-Based Data Analysis and Predictive
Model. International Journal of Atrtificial intelligence and Machine Learning, 1(3), 1-7. https://doi.org/10.55124/jaim.v1i3.288



Sciforce

© Aka, V.P.K, at al.

Table 4 provides an in-depth comparison of the performance metrics of the Random Forest Regression (RFR) model on both the training and testing
datasets. On the training data, this model shows excellent performance, with an R* value of 0.97354 and an Explained Variance Score (EVS) of 0.97356,
indicating that the model explains more than 97% of the variance in the performance index. The error metrics are correspondingly low, with a mean
square error (MSE) of 6.66, a root mean square error (RMSE) of 2.58, and a mean absolute error (MAE) of 2.06. These values suggest highly accurate
predictions during training. Furthermore, the maximum error is 6.61, and both the mean square log error (MSLE) and mean absolute error (MedAE)
are low at 0.01335 and 1.81, respectively, confirming the accuracy of the model and minimal deviation from the true values. However, the performance
of the model decreases significantly when applied to the test data. The R? score drops to 0.53269, showing that only about 53% of the variation in the
test set is captured, indicating low predictive power in the missing data. The EVS also drops to 0.58111, and the error metrics increase significantly—the
MSE increases to 47.70, the RMSE to 6.91, and the MAE to 6.86. The mean absolute error more than triples to 6.95, and although the maximum error
(7.83) and MSLE (0.02290) are within acceptable limits, the overall increase in error indicates that the model may overestimate the training data. This
observation is consistent with the scatter plots in Figures 5 and 6, where nearly perfect training predictions contrast with less accurate test predictions.
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Figure 6 presents the performance of the random forest regression
model by plotting the predicted values against the actual performance
index values on the test dataset. The dashed diagonal line represents the
best case where the predictions match the actual results perfectly. The
three blue dots correspond to the test cases. Although the sample size for
testing may seem small (only three data points), the dots are relatively
close to the diagonal line, indicating that the model made very accurate
predictions on the test set. The proximity of these dots to the line indicates
low prediction error and good generalization, at least for the limited test
data provided. Unlike typical scatter plots with large datasets, the scatter
distribution here limits the ability to draw broad statistical conclusions.
However, based on visual evidence, the model’s performance on the test
data is consistent with its training performance, as shown in Figure 5.
This is a positive sign, indicating that the random forest model may have
avoided overfitting, a common pitfall with such models. However, caution
is warranted as the size of the experimental dataset is very small, making
it difficult to rigorously assess the robustness and reliability of the model.
A more comprehensive test with a larger dataset would be required to
confidently assess the predictive power of the model. However, based on
this number, the random forest regression model demonstrates promising
generalization ability to predict performance index in unobserved data.

Conclusion

This comprehensive study on AI and robotics performance
optimization through sensor-based predictive modeling has provided
significant insights into the complex relationships between multiple input
parameters and system performance outcomes. Research successfully
demonstrates that sensor measurements can serve as reliable predictors
of Al and robotics system performance, with varying degrees of influence
and correlation strength.The analytical results reveal a clear hierarchy of

sensor importance, with Sensor 1 emerging as the primary determinant
of system performance, exhibiting a strong positive correlation of 0.65
with the performance index. This finding indicates that Sensor 1 captures
the fundamental operational characteristics that directly affect system
performance and accuracy. Sensor 2, although of secondary importance,
still maintains a meaningful positive correlation of 0.57, indicating its
supporting role in performance improvement. In contrast, the negligible
correlation of Sensor 3 highlights that not all measured parameters
contribute equally to system outcomes, emphasizing the need for selective
feature prioritization in AI and robotics applications.Comparative
analysis between linear regression and random forest regression models
provides valuable insights into the trade-offs between model complexity
and generalization ability.

Although random forest regression achieves better training
performance (R*> = 0.97), its significant performance drop (R* = 0.53)
on test data compared to linear regression (R* = 0.65) underscores the
importance of model validation and the dangers of overfitting complex
ensemble methods. This finding suggests that simpler models may
sometimes provide better generalization for practical applications in AI
and robotics systems.This research has practical implications for system
designers and engineers working in the field of artificial intelligence
and robotics. Identifying key sensor parameters enables more efficient
resource allocation, focusing measurement and computational efforts
on the variables that have the most impact. This approach can lead to
more cost-effective system designs without compromising performance
quality.Furthermore, this study contributes to a broader understanding
of performance optimization in intelligent automated systems. The
framework developed here can be adapted and extended to various Al
and robotics applications, from manufacturing automation to healthcare
robotics, providing a systematic approach to performance prediction and
system optimization.Future research directions should focus on expanding
the dataset size to improve model robustness, exploring nonlinear
relationships between sensors and performance, and exploring the
integration of additional environmental variables that may affect system
performance. In addition, real-time implementation studies will confirm
the practical applicability of these predictive models in operational AT and
robotics environments.
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