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Abstract

As organizations increasingly rely on computer networks for their daily operations, network traffic visualization has become increasingly important. The
complexity and volume of raw network traffic data pose significant challenges to human interpretation, forcing the need to transform numerical data into
understandable visual formats. This study addresses these challenges by introducing an innovative approach that combines multiple visualization techniques and
machine learning methods to improve network traffic analysis and anomaly detection. The research explores four primary visualization approaches: data filtering
and transformation, pixel-based techniques, graph-based representations, and integrated multi-view systems. A new method is proposed that incorporates Principal
component analysis (PCA) and multidimensional scaling (MDS) serve as efficient techniques for dimensionality reduction, and colour mapping techniques. The
system analyses key network performance metrics, including traffic load (MBps), latency (ms), packet loss percentage, and jitter (ms), to provide comprehensive
network monitoring capabilities. To improve the prediction accuracy, histogram gradient boosting regression is used, providing excellent performance in handling
large-scale datasets with missing values and categorical features. The combined approach demonstrates significant advantages over traditional methods such as
t-SNE, especially in preserving multidimensional properties and managing extensive data volumes. This research contributes to more efficient network management
through improved network security, improved anomaly detection capabilities, and advanced visualization and machine learning integration.
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Introduction

Network traffic visualization plays an important role as we increasingly
rely on computer networks, including the Internet, in our daily operations.
Irregular or unstable network behaviour disrupts operations and highlights
the need for continuous monitoring of network performance. Since raw
network traffic data is generally challenging for humans to understand,
visualization methods transform this data into more understandable
formats, such as images, so that it can be easily interpreted and analysed
using image processing techniques. This method helps in detecting
unusual activities, including activities such as Distributed Denial of
Service (DDoS) attacks or network monitoring provides valuable insights
into connectivity and performance, thereby supporting administrators in
protecting the integrity and reliability of the network [1]. To protect digital
environments and sensitive information, it is essential to understand and
evaluate the vast amount of daily network traffic. However, the dynamic
nature and complexity of network traffic patterns make this task difficult
and time-consuming. To overcome these challenges, an interactive,
web-based visualization system has been introduced. The system uses
a combination of integrated visualizations and rich user interactions to
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enhance users’ ability to understand and analyse network traffic data. In
addition, it incorporates feature extraction and uncertainty estimation
techniques to increase analysis accuracy and effectively detect unusual
network traffic patterns [2]. Effective visualization is a key tool for
understanding network operations, allowing users to discover insights
into network flows and recognize communication patterns.

However, the primarily numerical nature of network traffic data, which
contains elements such as timestamps, packet sizes, and inter-packet
intervals, makes it difficult to perceive relationships and underlying
structures. Many existing visualization techniques face challenges in
managing the complexity and volume of extensive network traffic data.
This study addresses these existing challenges by introducing a new and
efficient A technique for visualizing complex network traffic data enhanced
with statistical attributes, combining principal component analysis (PCA)
and multidimensional scaling (MDS) perform effective dimensionality
reduction, improving visual clarity through the use of colour maps. It is
capable of producing high-quality visualizations on real-world datasets,
providing a more adaptive and scalable solution compared to widely used
techniques such as t-SNE, especially in preserving multidimensional
properties and managing large data volumes [3]. Identifying intrusive
activities within a network is essential to ensure security. Despite the
availability of numerous computational approaches, confirming suspicious
events and interpreting their specific characteristics remains a challenging
task. To overcome this problem, various visualization frameworks have
been designed improve data understanding. However, the full potential
of these Graphical methods used for network traffic analysis has yet to
be fully explored. This paper bridges the gap by reviewing the current
literature and outlining four main approaches to efficient visualization
of network traffic includes data filtering and transformation, pixel-based
methods, graph-based models, and detailed multi-view architectures.
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Evaluate these methods, Initial visualization models were developed and
evaluated considering aspects such as implementation difficulty and the
amount of data pre-processing, pattern interpretation, and the ability
to detect unusual events [4]. Like other systems designed to help users
interpret large datasets, Flow Scan focuses on collecting, storing, and
visualizing network traffic data. Like many software tools, Flow Scan has
predecessors and related systems that have influenced its development and
features. Various previous tools have established methods for collecting
network traffic data through passive measurement techniques [5]. Its goal
is to visualize network traffic between workloads using multiple formats
such as graphs, tables, and web-based views. These diverse visualization
formats help users observe network relationships between workloads,
labels, IP addresses, and ports or protocols. In addition, the system
supports enhanced data centre security by improving network visibility
and analysis. Beyond facilitating anomaly detection, a key advantage of
this approach is its ability to provide an overall a representation of network
traffic activity is provided. Since the primary focus of this study is to
visualize network traffic data rather than analyse network architecture or
topology, it limits its review to previous research focused on network data
visualization [6]. A wide range of various techniques are currently used to
analyse network traffic. Some visualization focuses on specific machines
or depicts the connection between a single host and external entities.

However, although many administrators we interviewed manage
more than 100 systems, existing methods generally do not support very
large home or external networks. We believe that our approach offers the
highest scalability among the concrete network visualization techniques
available [7]. This allows the use from image processing and video
compression methods, including techniques such as scene change analysis
and motion estimation, in packet header data, which uncovers significant
characteristics of network traffic. In this study, we combine methods
from image processing and video analysis to improve traffic description
[8]. Recently, there has been a significant increase in network traffic
across the Internet, local area networks, enterprise private networks, and
data centre environments. To effectively manage this traffic, it is often
necessary to visualize overall connection patterns, such as end-to-end
connection diagrams. For example, in an enterprise in a virtual private
network (VPN), administrators need access up-to-date Monitoring traffic
behaviour is crucial to maintaining situational awareness. In the event of
safety alerts, administrators should conduct interactive traffic analysis to
implement immediate mitigation measures and appropriate remediation
measures [9]. Based on the effects of the architecture, Grid View effectively
presents network traffic in grids categorized by application layer protocols.
In addition, Plotter View visualizes wireless network traffic across the
entire campus on a single dynamic screen that automatically scales to the
size of the network. These interactive features greatly improve the ability
to detect and monitor compromised devices, while also reducing response
time [10].

Materials and Methods

Traffic Load MBps: Traffic load it refers to the amount of data
exchanged across a network within a given time frame. It an important
parameter that indicates how much demand is placed on a networK’s
resources, including bandwidth and processing capacity. Traffic load
varies depending on the number of active users, the types of applications
in use, and the time of day. Monitoring traffic load helps improve network
performance, avoid congestion, and ensure efficient data delivery across
the system.

Latency ms: Latency is the time delay between the initiation of a
request and the corresponding response in a network or computer
system. It is usually measured in milliseconds and is a key factor in
determining the performance of time-sensitive applications such as
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video conferencing, online gaming, and cloud computing. Latency can be
affected by many factors such as transmission distance, routing paths, and
hardware processing times. Low latency leads to faster communication
and an improved user experience, which is essential for efficient network
operations.

Packet Loss %: Packet loss describes a situation where data packets
within a network fail to reach their designated destination. Occurs when
one or more data packets travelling across a network are rejected or
dropped Network congestion, downtime caused by hardware, software
glitches, or weak signal strength. Packet loss can reduce network
performance and lead to outages, delays, or poor quality in Services
such as VoIP, multimedia streaming, and interactive online gaming.
Monitoring and minimizing packet loss is essential to maintaining reliable
and efficient data communications.

Jitter ms: Jitter refers to the variation in packet arrival times during
data transmission over a network. It is caused by network congestion, path
changes, or time drift, which leads to inconsistent delays between data
packets. Jitter is particularly problematic for Time-sensitive applications
such as VoIP, video meetings, and interactive online gaming, where a
consistent data stream is critical for quality performance. High jitter
can lead to choppy audio, video lag, or dropped calls. Reducing jitter is
important to ensure consistent and reliable communication.

Instructions for machine learning:

Hist Gradient Boosting Regression: Hist Gradient Boosting
Regression is an advanced machine learning algorithm used to predict
continuous outcomes. It is a variant of gradient boosting that uses
histogram-based techniques to improve both training speed and memory
capacity. Instead of evaluating all possible split points for continuous
features, the algorithm bins the values into discrete intervals (histograms),
which significantly reduces computational time and allows it to scale
efficiently to large datasets. This method builds a set the decision is based
on a set of trees, with each successive tree aiming to correct the mistakes
made by its predecessor. one by minimizing a specific loss function,
typically the mean square error for regression tasks. The trees are grown
continuously, and the overall prediction is obtained by aggregating the
outputs of all individual trees. Hist Gradient Boosting Regression is
particularly effective in dealing with missing values and categorical
features, and it often outperforms traditional gradient boosting methods
in both speed and accuracy. It is implemented in libraries such as Scikit-
learn and is well suited for large-scale machine learning tasks.

Results and Discussions

The datasets provide network traffic visualization data that shows how
various performance metrics vary with increasing traffic load (in MBps)
from 10 to 80. As traffic load increases, latency (ms), packet loss (%) and
jitter (ms) typically increase, indicating network congestion. Initially,
all metrics show gradual changes, but after about 40 MBps, latency and
jitter increase significantly, and packet loss becomes more erratic, peaking
near 4%. This indicates that the network becomes less efficient under
heavy loads. The table is useful for analysing quality of service (QoS)
under varying traffic conditions and identifying thresholds for optimal
performance.
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Table 1. Provides descriptive statistics for network performance measurements across 100 data points

Traffic Load MBps Latency ms Packet Loss % Jitter ms
count 100.00000 100.00000 100.00000 100.00000
mean 45.00000 77.29231 2.25446 4.53245
std 20.51318 30.90392 1.04440 2.07430
min 10.00000 25.78408 0.21693 0.59399
25% 27.50000 50.04677 1.40546 2.72256
50% 45.00000 77.64174 2.29654 4.47465
75% 62.50000 104.99794 3.18598 6.28564
max 80.00000 129.53083 3.97629 8.33572

Table 1 provides descriptive statistics for network performance measurements across 100 data points. The average traffic load is 45MBps, with
corresponding averages of 77.29ms latency, 2.25% packet loss, and 4.53ms jitter. The standard deviation indicates moderate variability, especially in
latency. The minimum values indicate optimal conditions (e.g., 25.78ms latency and 0.22% packet loss), while the maximum values reflect congestion
(e.g., 129.53ms latency and 3.98% packet loss). The median range is 50% of the data falls between 50.05 and 105ms latency and 2.72 to 6.29ms jitter,
indicating performance degradation as traffic increases.
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Figure 1: Scatter plot of the variousNetwork Traffic Visualization

Figure 1. Scatter plot matrix illustrating the relationships between key network traffic parameters: traffic load (Mbps), latency (ms), packet loss (%)
and jitter (ms). The graphs reveal strong positive correlations between all metrics, with increased traffic load leading to higher latency, packet loss and
jitter, indicating potential network congestion
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Figure 2: Heat map of the connection between process variables and outcomes
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Figure 2. Heat map illustrating the relationship between network process variables and performance outcomes. The values indicate strong positive
correlations between traffic load, latency, packet loss, and jitter, with coeflicients ranging from 0.95 to 1.00. This indicates that an increase in traffic load
significantly affects the overall network performance degradation.
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Figure 3: Hist Gradient Boosting Regression on Traffic Load MBps: training data

Figure 3. Predicted vs. actual traffic load (Mbps) using histogram-based gradient boosting regression on the training data. The scatterplot shows
predictions closely aligned with the diagonal reference line, indicating high model accuracy and effective learning. Most of the data points cluster around
the line, reflecting strong agreement between predicted and actual values.
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Figure 4: Hist Gradient Boosting Regression on Traffic Load MBps: testing data

Figure 4. Predicted vs. actual traffic load (Mbps) using histogram-based gradient boosting regression on test data. The data points closely align with
the diagonal reference line, indicating the strong generalization performance of the model. The tight clustering of the points indicates reliable prediction
accuracy and minimal deviation between the actual and predicted traffic loads.

Table 2. Performance Metrics of Hist Gradient Boosting Regression on Traffic Load MBps (Training Data and Testing Data)
Property | Data | Symbol | Model R2 EVS MSE RMSE MAE MaxError | MSLE MedAE
Traffic | Train | HGBR | Hist Gradient 0.98000 0.98000 | 8.43276 | 2.90392 | 1.91380 | 10.52296 | 0.01434 1.11462
Load Boosting
MBps Regression
Test | HGBR | Hist Gradient 0.96141 0.97071 | 13.83801 | 3.71995 | 2.78138 | 7.85079 | 0.03141 1.99473
Boosting
Regression
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Table 2 summarizes the performance metrics of the Hist Gradient Boosting Regression (HGBR) model for predicting traffic load (MBps) using both
Datasets used for model training and evaluation. For the training set, model performs exceptionally well, achieving R*> and EVS of 0.98 with low errors
(MSE: 8.43, RMSE: 2.90, MAE: 1.91). On the test data, the performance is strong (R* 0.961, EVS: 0.971), although the errors increase slightly (MSE:
13.84, RMSE: 3.72, MAE: 2.78), indicating good generalization ability. The low MSLE and Median Absolute Error (Med AE) on both sets confirm that
HGBR reliably models traffic load patterns.
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Figure 5: Hist Gradient Boosting Regression on Latency ms: training data

Figure 5. Predicted vs. actual latency (ms) using histogram-based gradient boosting regression on the training data. The data points closely follow
the diagonal line, indicating strong prediction accuracy. The model effectively captures latency patterns with minimal deviation between predicted and
actual values, demonstrating its robustness and relevance on the training dataset.
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Figure 6: Hist Gradient Boosting Regression on Latency ms: testing data

Figure 6. Predicted vs. actual latency (ms) using histogram-based gradient boosting regression on test data. The scatterplot shows a strong alignment
with the reference line, reflecting accurate model predictions. The close clustering of points indicates effective generalization, maintaining high latency
prediction accuracy in data where the model is not observed.

Table 3. Performance Metrics of Hist Gradient Boosting Regression on Latency ms (Training Data and Testing Data)
Property | Data | Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Latency Train HGBR Hist Gradient Boosting 0.98465 0.98465 14.70970 3.83532 2.69249 10.91003 0.00572 1.68710
ms Regression
Test HGBR Hist Gradient Boosting 0.96816 0.97819 25.44815 5.04462 3.47578 11.18833 0.01124 1.84285
Regression
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Table 3 presents the performance evaluation of the Hist Gradient Boosting Regression (HGBR) model for predicting latency (ms) using both training
and test data. This model demonstrates excellent accuracy on the training set with an R* and EVS of 0.98465 and low error metrics (MSE: 14.71, RMSE:
3.84, MAE: 2.69). On the test data, the model maintains strong predictive ability with an R* of 0.96816 and EVS of 0.97819, although the error values
increase slightly (MSE: 25.45, RMSE: 5.04). Overall, the low MSLE and Med AE indicate strong model performance and minimal deviation from the
true latency values.

Hist Gradient Boosting Regression (Packet Loss %):

Predicted vs Actual Packet Loss % (Testing data)
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training data Figure 8. Predicted vs. actual packet loss (%) using histogram-based

Figure 7. Predicted vs. actual packet loss (%) using histogram-based ~ gradient boosting regression on experimental data. The scatterplot shows
gradient boosting regression on training data. The scatterplot shows a  a strong linear relationship, with most data points closely aligned to the
strong correlation, with most points closely following the diagonal line. ~ diagonal reference line. This indicates that the model maintains high
This indicates that the model accurately captures the relationship in the  prediction accuracy and generalizes well to unobserved packet loss values.
training data and effectively predicts the packet loss percentages.

Table 4. Performance Metrics of Hist Gradient Boosting Regression on Packet Loss %(Training Data and Testing Data)

Property | Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Packet Train HGBR Hist Gradient Boosting 0.96342 0.96342 0.03915 0.19787 0.14871 0.53758 0.00644 0.10939
Loss % Regression

Test HGBR Hist Gradient Boosting 0.90507 0.91780 0.10605 0.32566 0.27626 0.69774 0.03138 0.24340
Regression

Table 4 outlines the performance metrics of the Hist Gradient Boosting Regression (HGBR) model for predicting packet loss (%) using the training
and testing datasets. On the training set, the model performs well with an R* and EVS of 0.96342 and low error metrics (MSE: 0.03915, RMSE: 0.19787,
MAE: 0.14871). The testing results show slightly lower performance with increased errors (MSE: 0.10605, RMSE: 0.32566) (R*: 0.90507, EVS: 0.91780),
but are still within acceptable limits. The low MSLE and Median Absolute Error (Med AE) for both sets indicate accurate modelling, indicating that
HGBR effectively captures the packet loss behaviour under varying network conditions.

Table 5. Hist Gradient Boosting Regression on Jitter ms(Training Data and Testing Data)
Property | Data | Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Jiter ms | Train HGBR Hist Gradient Boosting 0.94492 0.94492 0.23948 0.48936 0.35801 1.67351 0.01463 0.24147
Regression
Test HGBR Hist Gradient Boosting 0.84946 0.85970 0.51046 0.71446 0.62887 1.18019 0.01965 0.69081
Regression

Table 5 presents the performance metrics of the Hist Gradient Boosting Regression (HGBR) model for predicting jitter (ms) on both the training
and testing datasets. On the training data, this model achieves robust performance with an R? and EVS of 0.94492 and low error values (MSE: 0.23948,
RMSE: 0.48936, MAE: 0.35801). On the testing data, the performance is reliable with an R? 0f 0.84946 and EVS of 0.85970, although the errors increase
moderately (MSE: 0.51046, RMSE: 0.71446). The low MSLE and Med AE indicate that the model generalizes well and accurately captures jitter trends
across different network conditions.
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Figure 4: Hist Gradient Boosting Regression on Jitter ms: training data

Figure 9. Predicted vs. actual jitter (ms) using histogram-based gradient
boosting regression on the training data. The scatterplot illustrates a strong
linear fit along the diagonal line, indicating accurate model predictions.
The close clustering of points confirms the model’s effectiveness in
learning jitter patterns from the training dataset with minimal error.
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Figure 10: Hist Gradient Boosting Regression on Jitter ms: testing data

Figure 10. Predicted vs. actual jitter (ms) using histogram-based slope
boosting regression on experimental data. The scatterplot reveals a strong
correlation, with most points closely following the diagonal line. This
indicates that the model generalizes well, accurately predicting jitter values
in unobserved data with minimal deviation from actual observations.

Conclusion

Based on the detailed analysis presented in this study, the research
successfully demonstrates the effectiveness of combining advanced
visualization techniques with machine learning methods for network
traffic analysis and anomaly detection. The proposed approach, which
integrates Dimensionality reduction techniques such as PCA and MDS
with colour mapping techniques, provides significant improvements
over traditional methods such as t-SNE, especially in preserving
multidimensional properties and managing extensive data volumes. The

© Peram, S.R. at al.

implementation of Histogram Gradient Boosting Regression (HGBR) has
been shown to be highly effective in all network performance metrics. The
model demonstrates exceptional accuracy in predicting traffic load (R*
= 0.96-0.98), latency (R* = 0.97-0.98), packet loss (R* = 0.91-0.96), and
jitter (R*> = 0.85-0.94). These results indicate strong predictive capabilities
with minimal deviation between actual and predicted values, confirming
the model’s reliability for real-world network monitoring applications.
Correlation analysis reveals strong positive relationships between all
network parameters, with coefficients ranging from 0.95 to 1.00. As traffic
load increases, especially evident beyond 40 MBps, latency and jitter show
a significant increase, and packet loss becomes more erratic.

The research contributes significantly to network management by
providing administrators with advanced tools for proactive monitoring
and anomaly detection. The system’s ability to handle large-scale datasets
with missing values and categorical features makes it particularly valuable
for enterprise environments managing extensive network infrastructures.
Future work should focus on expanding visualization techniques to
incorporate real-time streaming capabilities and exploring additional
machine learning algorithms for comparative analysis. The integration
of deep learning approaches could further improve anomaly detection
accuracy, while creating automated alert systems based on established
performance thresholds could provide immediate operational benefits
for network administrators looking to maintain optimal network
performance and security.
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