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Abstract
The Performance Measurement Project at Thompson is a targeted effort to evaluate the performance of applications before they are shipped to production. 

Understanding the importance of performance in designing user satisfaction and experience, the project focused on identifying and resolving performance issues 
early in the development process. Apache JMeter was used to emulate real-world user activity and assess system responsiveness under different load conditions. To 
improve testing efficiency and data manipulation, the team implemented a comprehensive automation framework using shell and Perl scripts for remote execution, 
result collection, and monitoring of key metrics. The structured log outputs from JMeter were analyzed using custom Java programs, which generated detailed 
reports highlighting application behavior, including response times, CPU usage, and memory consumption. The project further integrated machine learning 
regression models—Support Vector Regression, AdaBoost, and Gradient Boosting—to predict memory usage and compare model performance during training and 
testing. Of these, SVR demonstrated superior generalization, while ensemble models, despite high training accuracy, exhibited overfitting. Through automation, 
analytical tools, and predictive modeling, the project streamlined performance evaluation and strengthened the reliability and quality of software outputs.
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Introduction
 The Performance Measurement Program was a key initiative at 

Thompson, aimed at evaluating and ensuring that all applications were 
tested before they were released to production. Understanding the critical 
role that performance plays in delivering seamless user experiences and 
maintaining customer satisfaction, the program focused on identifying 
and addressing potential issues early in the development cycle. This 
proactive approach helped reinforce the company’s commitment to 
delivering consistent, high-quality software solutions. [1] To simulate 
real-world load conditions, Apache JMeter was used as the primary tool 
for performance testing. JMeter enabled the simulation of simultaneous 
user interactions and allowed for a thorough assessment of application 
responsiveness under various stress levels. These simulated environments 
helped understand how applications handled various loads, pinpoint 
bottlenecks, and evaluate key metrics such as response time, performance, 
and failure rates.[2] To support distributed testing and streamline 
implementation, a robust set of shell scripts was developed. These scripts 
automated connections to remote servers, launched test scenarios, and 
collected performance metrics from multiple locations. This automation 
significantly reduced manual effort, ensuring both time efficiency and 

consistent execution across environments. [3] Raw data collected from 
JMeter tests was stored in structured logs. Custom Java applications 
were developed to analyze these files and generate detailed performance 
reports. 

These reports provided valuable insights, including trend analysis and 
comparisons between configurations, which helped teams quickly identify 
performance lags or improvements. [4] In addition to Java, Perl scripts 
were used for advanced data processing. Perl was particularly useful for 
analyzing large log files, isolating specific performance parameters, and 
generating concise summaries. Some scripts also monitored important 
statistics such as average and percent response times, error distributions, 
CPU usage, and memory consumption, contributing to more accurate 
diagnostics. [5] A key milestone of this project was the automation of 
repetitive tasks, which improved productivity and allowed the team to 
focus on high-impact areas such as test coverage and scenario optimization. 
By automating report generation and test execution, manual errors were 
reduced, and a more structured test pipeline was established. [6] In my 
role as the Single Point of Contact (SPOC) for the customer, I managed 
technical implementation, customer communication, and internal 
integration. I led the design of performance architectures, conducted 
requirements-gathering sessions, and translated business requirements 
into measurable performance goals. By working closely with developers, 
testers, and business analysts, I ensured that performance concerns were 
addressed early and thoroughly.[7] Another key responsibility was to 
create JMeter scripts to suit different application workflows such as logins, 
transactions, reporting, and background processing. Each application had 
unique characteristics, and the scripts were designed to reflect different 
usage patterns under normal, peak, and stress conditions.[8] Given the 
diversity of applications and platforms at Thomson, the performance 
testing framework was built to be adaptable and reusable. Parameterized 
scripts and dynamic configuration files ensured compatibility across 
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Linux, Windows, and cloud-based environments. This flexibility allowed 
for seamless integration across different deployment infrastructures.
[9] One of the challenges we overcame was distributed test execution. 
To simulate geographically dispersed users, we created a centralized 
execution controller using shell scripting, executing test runs organized 
across multiple nodes. This setup facilitated a more realistic view of 
application scalability and network behavior.Continuous improvement 
was a focus throughout the project. We improved test scenarios based on 
feedback, introduced comparative dashboards, and implemented alert 
systems to notify stakeholders of limit violations. These improvements 
increased visibility, responsiveness, and overall software quality.[10] 
Ultimately, the performance measurement program played a key role in 
ensuring that applications met performance standards before release. By 
validating behavior in staging environments under real-world conditions, 
we improved deployment risk, improved reliability, and increased 
customer confidence in the final product.[11]

Materials and Method
 Support Vector Regression (SVR) is an adaptation of the Support Vector 

Machine (SVM) framework designed for continuous output prediction. It 
aims to determine a regression function that is within a specified error 
range (epsilon) from the true target values while maintaining model 
simplicity. SVR effectively models nonlinear relationships using kernel 
functions without the need to explicitly transform input features. This 
capability allows SVR to adapt to complex datasets while preserving 
generalization. In practical application, SVR typically achieves high 
predictive accuracy in training, with elevated R² and explained variance 
scores (EVS), indicating that it captures the underlying data patterns well 
without being prone to overfitting. Furthermore, its root means square 
error (RMSE) and mean absolute error (MAE) values are typically low, 
highlighting its ability to provide accurate predictions while being resilient 
to data noise.When evaluated on unseen data, SVR consistently performs 
reliably, showing only a modest increase in prediction errors compared 
to training. This modest drop is expected in real-world applications and 
indicates strong generalization. Unlike ensemble-based techniques such 
as Gradient Boosting and Adaboost, SVR shows very little difference 
between training and test performance. 

This narrow interval indicates that the model captures broadly 
applicable patterns rather than memorizing training events. SVR’s 
minimal overfitting and consistently accurate predictions across a 
wide range of memory usage levels make it well-suited for applications 
that demand reliable predictions on unfamiliar data, such as real-
time computer resource management or memory usage forecasting in 
computing environments.Gradient Boosting Regression (GBR) takes a 
significantly different approach. As a form of ensemble learning, it builds 
a series of models, where each successive model is trained to correct for 
the errors of the previous one. GBR is very effective at capturing complex 
and nonlinear relationships, often outperforming traditional models on 
difficult datasets. In training, it typically achieves very high accuracy, often 
achieving perfect or nearly perfect scores—R² and EVS values of 1.0000, 
for example. Related error measures such as RMSE, MAE, and MSLE 
often go to zero, indicating that the model represents the training data 
with perfect accuracy. While this may seem ideal, such accuracy usually 
indicates overfitting, as the model may fit not only relevant patterns 
but also noise.This concern becomes clear when GBR is applied to test 
data. While still achieving reasonably high R² and EVS values, the error 
measures rise sharply, often by an order of magnitude. The RMSE and 
MAE increase significantly, and in some cases, the maximum prediction 
error can reach values that make the model unreliable for practical use.

 These results highlight the sensitivity of GBR to overfitting, especially 
when the model complexity is not controlled by proper regularization or 
adjustment. Although GBR has the potential for exceptional performance, 
it requires careful configuration to avoid learning details that cannot be 
generalized from the training set. As a result, its use may be limited in 
contexts that require robust and interpretable models, such as resource 
planning in manufacturing systems, without adequate safeguards.
AdaBoost regression is another group-based method that uses a similar 
incentive strategy to GBR, but has a unique mechanism for adjusting 
model attention. It works by giving more weight to training models 
that previous learners predicted poorly, thereby guiding the next weak 
learner—typically a shallow decision tree—to focus on more difficult 
cases. AdaBoost often achieves very high training accuracy, with R² and 
EVS values approaching 0.9997, and low values for RMSE and MAE. This 
performance explains its strong ability to learn from training data and 
effectively capture relevant patterns.However, like GBR, AdaBoost also 
suffers from overfitting, as is evident from its performance on test data. 
Although the drop in R² and EVS scores is less pronounced compared to 
GBR, error metrics such as RMSE and MAE increase sharply—sometimes 
by 10 to 25 times their training values. The mean and maximum absolute 
errors also increase significantly, indicating that the model’s predictive 
stability deteriorates when faced with new data. These problems stem 
from AdaBoost’s tendency to focus too much on outliers or events that are 
difficult to predict, especially in the absence of sufficient regularization. As 
a result, its performance can become unstable in production environments 
where consistent behavior on unseen data is essential.

The dataset consists of 20 entries, each describing five essential system 
performance indicators recorded under different operational loads: average 
response time, CPU utilization, memory utilization, concurrent users, and 
the calculated performance score. Analysis of these observations reveals 
meaningful patterns in system performance under different conditions.The 
average response time shows considerable variation from 180 MS to 520 
MS. Shorter response times, such as 180 MS and 185 MS, are consistently 
associated with higher performance scores (e.g., 91.2 and 90.5). In contrast, 
response times beyond 470 MS correspond to significantly lower scores - 
for example, a 520 MS response time leads to a score of 54.7. This clear 
negative correlation indicates that increased response times reduce system 
performance and user satisfaction.CPU utilization shows a comparable 
trend. Values range from 59.2% to 89.1%, with higher CPU utilization 
generally associated with lower performance outcomes. For example, 
utilization levels above 85% are associated with poor scores - 88.2% and 
86.4% CPU utilization correspond to scores of 56.4 and 58.3, respectively. 
On the other hand, performance scores above 87 are typically associated 
with CPU loads below 65%, indicating that optimal performance occurs 
under moderate processing demands.Memory utilization, which ranges 
from 1550 MB to 3350 MB, further reinforces these patterns. Systems 
that consume less memory - specifically between 1550 MB and 1800 MB 
- tend to provide better results. The lowest memory utilization observed 
(1550 MB) corresponds to the highest recorded score of 92.4. In contrast, 
higher memory requirements above 3100 MB are consistently associated 
with reduced performance, underscoring the performance impact of 
excessive memory consumption.Concurrent users also significantly affect 
performance. Low user counts (35–50 users) are typically associated with 
scores above 87, indicating that the system performs well under light 
loads. As the number of users increases to 120 or more, performance 
drops sharply—for example, scenarios with 130 and 140 users show scores 
of 56.4 and 54.7, respectively—highlighting the system stress under high 
user concurrency.
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Analysis and Dissection

Table 1: This descriptive statistics table summarizes the performance metrics collected from 20 load test scenarios

Avg Response Time CPU Utilization Memory Usage Concurrent Users Computed performance score

count 20.000 20.000 20.000 20.000 20.000

mean 321.750 73.265 2317.500 78.750 75.765

std 122.219 9.493 584.284 31.639 12.456

min 180.000 59.200 1550.000 35.000 54.700

25% 217.500 67.250 1875.000 57.500 66.975

50% 290.000 72.200 2200.000 73.500 77.900

75% 421.250 80.100 2687.500 95.000 85.600

max 520.000 89.100 3350.000 140.000 92.400

This descriptive statistics table summarizes the performance metrics collected from 20 load test scenarios. It highlights important trends in system 
behavior and resource utilization.Response Time and User Load:The system had an average response time of 321.75 milliseconds, with a significant 
standard deviation of 122.22 MS, indicating variation in performance. Response times ranged from 180 MS to 520 MS, indicating a decrease in 
performance under heavy loads. 

The number of concurrent users averaged 78.75, ranging from 35 to 140, reflecting the tests conducted under a variety of load conditions.Resource 
Usage: CPU utilization remained consistently high, averaging 73.27%, with an interquartile range of 67.25% to 80.10%. The standard deviation of 
9.49% indicates relatively stable CPU demand. Memory usage averaged 2,317.5 MB, but showed significant variation from 1,550 MB to 3,350 MB, 
with a standard deviation of 584.28 MB, indicating that the measured memory consumption was under system stress.Performance Rating: The average 
performance score was 75.77 on a 100-point scale, with values ranging from 54.7 to 92.4. The median score of 77.9 - slightly above the median - indicates 
a slightly left-skewed distribution. Most scenarios fell within the midpoint range of 66.98 to 85.60, indicating generally acceptable system performance, 
although the lowest score of 54.7 points was for some of the less-than-optimal configurations.

Figure 1: Effect of Process Parameters
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The scatter plot matrix highlights the strong interdependence among key system performance metrics. Variables such as average response time, CPU 
utilization, memory utilization, and number of concurrent users all show positive correlations, indicating that increasing system load can simultaneously 
degrade performance across multiple dimensions.The histograms on the diagonal illustrate the distribution of each metric: response time and memory 
utilization are skewed to the right, indicating occasional high load or stress conditions. In contrast, CPU utilization follows a more normal distribution 
centered around 70-80%, while the distribution of concurrent users is bimodal, indicating the presence of two distinct load situations or test conditions.
The performance score shows a clear negative correlation with the other metrics, confirming that higher response times and resource utilization are 
associated with lower performance outcomes. The scatter plots also reveal largely linear relationships between the variables, with significant clustering 
at lower values, which may indicate different system states or phases of testing.

Figure 2: Correlation heatmap

The correlation matrix reveals very strong correlations between the system performance metrics. Response time, CPU utilization, memory 
consumption, and concurrent user count all exhibit nearly perfect positive correlations (0.98 to 1.00), indicating a high degree of interdependence driven 
by shared underlying system load factors.In contrast, the performance score is completely negatively correlated with all other metrics (-0.99 to -1.00), 
clearly demonstrating that it acts as an inverse indicator of overall system health. These patterns highlight memory consumption as a particularly strong 
predictor of system performance, indicating that resource utilization metrics closely track system degradation under stress.Consistently high correlation 
values indicate very little data variability or noise, indicating that any single variable can act as a reliable predictor of the others. This makes the dataset 
well suited for machine learning models aimed at predicting performance outcomes.

Table 2. AdaBoost Regression Memory Usage Train and Test performance 
metrics

AdaBoost Regression Train Test

R2 0.9997 0.9615

EVS 0.9997 0.9678

MSE 85.4167 11562.5000

RMSE 9.2421 107.5291

MAE 3.7500 93.7500

Max Error 25.0000 200.0000

MSLE 0.0000 0.0038

Med AE 0.0000 75.0000

The AdaBoost regression model shows a significant gap between 
training and testing performance, clearly indicating classic overfitting 
behavior. During training, the model achieves almost perfect accuracy, 

with an R² score of 0.9997 - which explains 99.97% of the variance. 
This is reinforced by an equally high explained variance score (EVS) 
of 0.9997. The error metrics are very low: the root mean square error 
(RMSE) is just 9.24 MB and the mean absolute error (MAE) is 3.75 MB. 
Notably, the mean absolute error is 0.0000 MB, meaning that half of the 
predictions were correct, while the worst-case error during training is 
only 25 MB.However, the model’s performance drops significantly on the 
test data, revealing its limited generalization ability. The R² score drops 
to 0.9615 - still indicating good predictive power - but the increase in 
error metrics is substantial. While the EVS improves slightly to 0.9678, 
the RMSE rises sharply to 107.53 MB and the MAE rises sharply to 
93.75 MB – 25 times higher than the training one. The maximum error 
rises to 200 MB, eight times higher than the training maximum, and the 
average absolute error rises to 75 MB, indicating that at least half of the 
test predictions deviate by this amount.The mean square logarithmic error 
(MSLE) increases from 0.0000 to 0.0038, which is relatively low, but still 
reflects poor performance. Overall, the sharp increase in all error metrics 
between the training and test phases confirms that while AdaBoost fits 
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the training data exceptionally well, it struggles to generalize. Instead 
of broad, generalizable trends, the model may have captured noise and 
overly specific patterns – highlighting the need for better regularization 
techniques or simplification of the model to improve its performance on 
unseen data.

Figure 3: AdaBoost RegressionMemory Usage Training

The AdaBoost training results indicate excellent model accuracy, with 
predicted memory usage values closely matching the actual values along 
the diagonal reference line. The model performs well over the entire 
memory usage range (1750–3250 MB), showing minimal deviation from 
the best predictions.The close clustering of data points near the diagonal 
indicates both low bias and low variance during training. The clear linear 
pattern indicates that AdaBoost effectively captured the underlying data 
structure without any signs of overfitting. Furthermore, the consistent 
accuracy of the model across varying memory levels reflects a strong 
understanding of the relationship between input features and memory 
consumption.

Figure 4: AdaBoost RegressionMemory Usage Testing

The AdaBoost test results show a slight decline in prediction accuracy 
compared to the training phase, which is typical and expected. While 
many predictions still fall closely to the diagonal reference line, there is 
significant dispersion—especially within the middle range of memory 
usage (2000–2500 MB).The model maintains good accuracy at the lower 
and upper ends of the memory range, but shows increased uncertainty 
for intermediate values. This pattern indicates mild overfitting, where 
the model may have adapted too closely to the training data. However, 
overall performance is solid.The preservation of a clear linear trend 
in the predictions indicates that AdaBoost successfully captured key 
relationships in the data, rather than simply memorizing the training set. 
These results indicate that the model generalizes reasonably well, albeit 
with slightly reduced accuracy when applied to new data.

Table 3. Gradient Boosting RegressionMemory UsageTrain and Testperformance 
metrics

Gradient Boosting Regression Train Test

R2 1.0000 0.9623

EVS 1.0000 0.9689

MSE 0.0000 11296.0219

RMSE 0.0000 106.2827

MAE 0.0000 88.7038

Max Error 0.0000 200.0000

MSLE 0.0000 0.0037

Med AE 0.0000 83.0048

Among the models evaluated, the gradient boosting regression 
algorithm exhibits the most severe overfitting. It provides flawless 
training performance, with both the R² score and the explained variance 
score (EVS) reaching exactly 1.0000 – indicating that the model accounts 
for 100% of the variance in the training data. All error measures during 
training – mean square error (MSE), root mean square error (RMSE), 
mean absolute error (MAE), maximum error, mean absolute error and 
mean square logarithmic error (MSLE) – are exactly 0.0000, reflecting 
correct predictions on every training instance. Such results strongly 
suggest that the model has memorized the training data entirely, rather 
than generalizing learning patterns.The experimental results highlight 
the effects of this overfitting. Although the R² score is relatively high at 
0.9623 – indicating that the model retains some predictive ability – the 
sharp rise in the error measures reveals poor generalization. The RMSE 
increases from zero to 106.28 MB, while the MAE increases to 88.70 MB, 
both indicating a drastic increase. The maximum error matches the worst-
case value of AdaBoost at 200 MB, and the mean absolute error reaches 
83.00 MB, meaning that half of the predictions in the test set deviate by 
this amount or more.Despite the slight improvement in EVS to 0.9689 
and the still low MSLE of 0.0037, these figures cannot compensate for 
the dramatic increase in overall error. The perfect performance on the 
training data, combined with the sharp drop in test accuracy, clearly 
illustrates that gradient boosting, while very obvious, can overfit if not 
properly regularized. The tendency of the model to memorize rather than 
generalize limits its usefulness in real-world memory-intensive prediction 
tasks, where robust performance on unseen data is essential.
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Figure 5: Gradient Boosting RegressionMemory Usage Training

Gradient boosting exhibits excellent training performance, with 
predicted values closely aligned on the diagonal reference line – indicating 
near-perfect accuracy. The model performs exceptionally well across the 
entire memory usage range, showing almost no deviation from expected 
values.This precise alignment suggests that gradient boosting effectively 
captured the detailed relationships within the training data. Consistent 
accuracy across all usage levels reflects well-tuned parameters and efficient 
boosting iterations. Tightly clustered predictions indicate minimal residual 
error and a comprehensive understanding of data patterns.However, such 
high accuracy can also indicate potential overfitting during training, 
emphasizing the importance of evaluating the model’s performance on 
test data to determine its true generalization ability.

Figure 6: Gradient Boosting RegressionMemory Usage Testing

The results of the gradient boosting experiment reveal a significant drop 
in performance compared to the training phase, indicating significant 
overfitting. While some predictions are accurate, there is considerable 
scatter—especially in the low memory usage range (1750–2000 MB)—
which indicates a lack of consistency in the model’s generalization.This 
discrepancy suggests that the model may have picked up noise or over 
specific patterns from the training data, rather than learning relationships 
that are broadly applicable. The inconsistent performance across different 

memory levels suggests that the model is not suitable for unseen data.

Table 4. Support Vector Regression Memory Usage Train and Test performance 
metrics

Support Vector Regression Train Test

R2 0.9958 0.9818

EVS 0.9963 0.9835

MSE 1141.8442 5449.0504

RMSE 33.7912 73.8177

MAE 24.1593 67.2627

Max Error 77.6901 106.6206

MSLE 0.0002 0.0014

Med AE 15.4559 69.1071

The three models evaluated, Support Vector Regression (SVR) 
provides the most balanced and reliable performance, demonstrating 
strong generalization with minimal signs of overfitting. During training, 
this model achieves a high R² score of 0.9958, explaining 99.58% of 
the variance in the data. This high level of accuracy is reinforced by an 
explained variance score (EVS) of 0.9963. Error metrics remain modest, 
with RMSE of 33.79 MB and MAE of 24.16 MB, indicating effective fit 
without overfitting. The maximum error of 77.69 MB and the mean 
absolute error of 15.46 MB indicate consistent performance across the 
dataset, while the low MSLE of 0.0002 confirms the minimum logarithmic 
deviation.Experimental results further highlight the strong generalization 
ability of SVR. The R² score from training decreases slightly to 0.9818, a 
modest 1.4% decline, while the EVS similarly decreases to 0.9835 - both 
metrics still reflect excellent predictive performance. The RMSE increases 
to 73.82 MB, representing a 2.2-fold increase from training, which is 
significantly less than the ten-fold increases seen with AdaBoost and 
Gradient Boosting. The MAE increases to 67.26 MB and the maximum 
error increases to 106.62 MB - both manageable increases that indicate 
stable model behavior.The mean absolute error increases to 69.11 MB, and 
the MSLE grows to 0.0014, but these changes remain relatively modest, 
especially compared to other models. Overall, the SVR clearly captures 
the underlying patterns in the data without being misled by noise or 
overfitting to training-specific details. The short performance gap between 
training and testing underscores SVR’s well-balanced complexity and 
generalization, making it a highly reliable choice for real-world memory 
usage prediction, where consistency on unseen data is paramount.

Figure 7: Support Vector Regression Memory Usage Training
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Support Vector Regression (SVR) exhibits strong training performance, 
with predicted values closely aligned along the diagonal reference line. 
The model maintains high accuracy across all memory usage levels, 
showing only slight deviations from the best predictions.The clear linear 
pattern indicates that SVR effectively captured key relationships within 
the training data. The dense clustering of data points reflects low training 
error and indicates that the model achieved a well-balanced trade-
off between complexity and accuracy.The consistent results across the 
memory range indicate successful kernel selection and effective parameter 
tuning. Overall, the model’s solid training performance indicates that SVR 
not only captured key data patterns but also preserved model simplicity—a 
key factor for strong generalization to new data

Figure 8: Support Vector Regression Memory Usage Testing

The SVR test results indicate decent generalization, with a moderate 
performance degradation compared to the training phase. Despite a 
slightly increased scatter in the predictions, the overall alignment with 
the diagonal reference line is satisfactory.The model performs well at most 
memory usage levels, although accuracy drops slightly in the mid-range. 
Unlike gradient boosting, SVR maintains a very stable balance between 
training and testing performance, which reflects its strong generalization 
ability.These results suggest that SVR achieved a useful compromise 
between fitting the training data and maintaining prediction accuracy 
on unseen data. This balanced performance highlights SVR as a reliable 
option for predicting memory usage in real-world or production settings.

Conclusion
 The performance measurement program at Thompson emerged as a 

robust and efficient solution for validating application performance before 
moving to production. Through the integration of automated testing tools, 
performance diagnostics, and machine learning models, the program 
developed a structured methodology for identifying performance issues, 
refining system operations, and improving the user experience. Apache 
JMeter played a key role in load testing, effectively replicating real-world 
user interactions to assess key performance metrics including response 
time, CPU utilization, memory utilization, and concurrent user load 
under various operating conditions. The insights gained from these 
simulations allowed the team to accurately identify design inefficiencies 
and fine-tune system limitations.Automation was another cornerstone 
of the program, achieved through the development and deployment of 
shell and Perl scripts. These scripts streamlined essential processes such 
as launching test runs, aggregating results, and managing distributed 

environments, improving reliability and test consistency. 

To complement this automation, custom Java applications were 
developed to analyze and analyze the structured log data, generating 
detailed reports that provided valuable performance insights across 
different application builds.A unique feature of the project was the use of 
machine learning regression models – Support Vector Regression (SVR), 
Adaboost, and Gradient Boosting – to predict memory consumption 
based on input metrics. SVR distinguished itself as the most reliable 
model, providing balanced performance with minimal overfitting and 
strong generalization across datasets. In comparison, ensemble models, 
while highly accurate during training, showed reduced performance on 
unseen data, indicating a tendency to fit the training data too closely.
Beyond improving testing procedures, the project fostered a culture of 
continuous refinement and data-driven decision-making. Improvements 
in context optimization, configuration flexibility, and automated alerting 
systems led to faster problem resolution and better software reliability. 
Extensive testing significantly reduced the chances of structural 
performance issues reaching production, ultimately strengthening user 
confidence and satisfaction.
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