
Journal of Artificial Intelligence and Machine Learning
 Journal homepage: www.sciforce.org

 ISSN : 2995-2336

Citation: Peram, S. R. (2025). Machine Learning-Based performance evaluation and memory usage forecasting for intelligent systems. Journal of Artificial Intelligence and
Machine Learning, 3(3), 275. https://doi.org/10.55124/jaim.v3i3.275

Machine Learning-Based Performance Evaluation and Memory Usage
Forecasting for Intelligent Systems

Sudhakara Reddy Peram*

Engineer Leader,., United States

Abstract
The Performance Measurement Project at Thompson is a targeted effort to evaluate the performance of applications before they are shipped to production.

Understanding the importance of performance in designing user satisfaction and experience, the project focused on identifying and resolving performance issues
early in the development process. Apache JMeter was used to emulate real-world user activity and assess system responsiveness under different load conditions. To
improve testing efficiency and data manipulation, the team implemented a comprehensive automation framework using shell and Perl scripts for remote execution,
result collection, and monitoring of key metrics. The structured log outputs from JMeter were analyzed using custom Java programs, which generated detailed
reports highlighting application behavior, including response times, CPU usage, and memory consumption. The project further integrated machine learning
regression models—Support Vector Regression, AdaBoost, and Gradient Boosting—to predict memory usage and compare model performance during training and
testing. Of these, SVR demonstrated superior generalization, while ensemble models, despite high training accuracy, exhibited overfitting. Through automation,
analytical tools, and predictive modeling, the project streamlined performance evaluation and strengthened the reliability and quality of software outputs.

Key words: Performance Testing, JMeter, Automation, Shell Scripting, Memory Usage Prediction, Machine Learning, Support Vector Regression, Gradient
Boosting, AdaBoost, System Optimization.

Research Article

Review Article

Received date: August 07, 2025 Accepted date: August 18, 2025;
Published date: August 22, 2025

*Corresponding Author: Peram, S. R.., Engineer Leader, Illumio Inc., CA , United
States., E- mail: sudhakarap2013@gmail.com

Copyright: © 2025 Peram, S. R.. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Open Access

1

Open Access

Introduction
 The Performance Measurement Program was a key initiative at

Thompson, aimed at evaluating and ensuring that all applications were
tested before they were released to production. Understanding the critical
role that performance plays in delivering seamless user experiences and
maintaining customer satisfaction, the program focused on identifying
and addressing potential issues early in the development cycle. This
proactive approach helped reinforce the company’s commitment to
delivering consistent, high-quality software solutions. [1] To simulate
real-world load conditions, Apache JMeter was used as the primary tool
for performance testing. JMeter enabled the simulation of simultaneous
user interactions and allowed for a thorough assessment of application
responsiveness under various stress levels. These simulated environments
helped understand how applications handled various loads, pinpoint
bottlenecks, and evaluate key metrics such as response time, performance,
and failure rates.[2] To support distributed testing and streamline
implementation, a robust set of shell scripts was developed. These scripts
automated connections to remote servers, launched test scenarios, and
collected performance metrics from multiple locations. This automation
significantly reduced manual effort, ensuring both time efficiency and

consistent execution across environments. [3] Raw data collected from
JMeter tests was stored in structured logs. Custom Java applications
were developed to analyze these files and generate detailed performance
reports.

These reports provided valuable insights, including trend analysis and
comparisons between configurations, which helped teams quickly identify
performance lags or improvements. [4] In addition to Java, Perl scripts
were used for advanced data processing. Perl was particularly useful for
analyzing large log files, isolating specific performance parameters, and
generating concise summaries. Some scripts also monitored important
statistics such as average and percent response times, error distributions,
CPU usage, and memory consumption, contributing to more accurate
diagnostics. [5] A key milestone of this project was the automation of
repetitive tasks, which improved productivity and allowed the team to
focus on high-impact areas such as test coverage and scenario optimization.
By automating report generation and test execution, manual errors were
reduced, and a more structured test pipeline was established. [6] In my
role as the Single Point of Contact (SPOC) for the customer, I managed
technical implementation, customer communication, and internal
integration. I led the design of performance architectures, conducted
requirements-gathering sessions, and translated business requirements
into measurable performance goals. By working closely with developers,
testers, and business analysts, I ensured that performance concerns were
addressed early and thoroughly.[7] Another key responsibility was to
create JMeter scripts to suit different application workflows such as logins,
transactions, reporting, and background processing. Each application had
unique characteristics, and the scripts were designed to reflect different
usage patterns under normal, peak, and stress conditions.[8] Given the
diversity of applications and platforms at Thomson, the performance
testing framework was built to be adaptable and reusable. Parameterized
scripts and dynamic configuration files ensured compatibility across

© Peram, S. R. at al.

Citation: Dandasi, V. V. “Healthcare Data Warehouse Implementation with Machine Learning Regression Analysis: A Comparative Study of Random Forest, AdaBoost, and XGBoost for
Regulatory Compliance Prediction” Journal of Artificial intelligence and Machine Learning., 2024, vol. 2, no. 2, pp. 1–7. doi: https://dx.doi.org/10.55124/jaim.v2i2.266

2

Linux, Windows, and cloud-based environments. This flexibility allowed
for seamless integration across different deployment infrastructures.
[9] One of the challenges we overcame was distributed test execution.
To simulate geographically dispersed users, we created a centralized
execution controller using shell scripting, executing test runs organized
across multiple nodes. This setup facilitated a more realistic view of
application scalability and network behavior.Continuous improvement
was a focus throughout the project. We improved test scenarios based on
feedback, introduced comparative dashboards, and implemented alert
systems to notify stakeholders of limit violations. These improvements
increased visibility, responsiveness, and overall software quality.[10]
Ultimately, the performance measurement program played a key role in
ensuring that applications met performance standards before release. By
validating behavior in staging environments under real-world conditions,
we improved deployment risk, improved reliability, and increased
customer confidence in the final product.[11]

Materials and Method
 Support Vector Regression (SVR) is an adaptation of the Support Vector

Machine (SVM) framework designed for continuous output prediction. It
aims to determine a regression function that is within a specified error
range (epsilon) from the true target values while maintaining model
simplicity. SVR effectively models nonlinear relationships using kernel
functions without the need to explicitly transform input features. This
capability allows SVR to adapt to complex datasets while preserving
generalization. In practical application, SVR typically achieves high
predictive accuracy in training, with elevated R² and explained variance
scores (EVS), indicating that it captures the underlying data patterns well
without being prone to overfitting. Furthermore, its root means square
error (RMSE) and mean absolute error (MAE) values are typically low,
highlighting its ability to provide accurate predictions while being resilient
to data noise.When evaluated on unseen data, SVR consistently performs
reliably, showing only a modest increase in prediction errors compared
to training. This modest drop is expected in real-world applications and
indicates strong generalization. Unlike ensemble-based techniques such
as Gradient Boosting and Adaboost, SVR shows very little difference
between training and test performance.

This narrow interval indicates that the model captures broadly
applicable patterns rather than memorizing training events. SVR’s
minimal overfitting and consistently accurate predictions across a
wide range of memory usage levels make it well-suited for applications
that demand reliable predictions on unfamiliar data, such as real-
time computer resource management or memory usage forecasting in
computing environments.Gradient Boosting Regression (GBR) takes a
significantly different approach. As a form of ensemble learning, it builds
a series of models, where each successive model is trained to correct for
the errors of the previous one. GBR is very effective at capturing complex
and nonlinear relationships, often outperforming traditional models on
difficult datasets. In training, it typically achieves very high accuracy, often
achieving perfect or nearly perfect scores—R² and EVS values of 1.0000,
for example. Related error measures such as RMSE, MAE, and MSLE
often go to zero, indicating that the model represents the training data
with perfect accuracy. While this may seem ideal, such accuracy usually
indicates overfitting, as the model may fit not only relevant patterns
but also noise.This concern becomes clear when GBR is applied to test
data. While still achieving reasonably high R² and EVS values, the error
measures rise sharply, often by an order of magnitude. The RMSE and
MAE increase significantly, and in some cases, the maximum prediction
error can reach values that make the model unreliable for practical use.

 These results highlight the sensitivity of GBR to overfitting, especially
when the model complexity is not controlled by proper regularization or
adjustment. Although GBR has the potential for exceptional performance,
it requires careful configuration to avoid learning details that cannot be
generalized from the training set. As a result, its use may be limited in
contexts that require robust and interpretable models, such as resource
planning in manufacturing systems, without adequate safeguards.
AdaBoost regression is another group-based method that uses a similar
incentive strategy to GBR, but has a unique mechanism for adjusting
model attention. It works by giving more weight to training models
that previous learners predicted poorly, thereby guiding the next weak
learner—typically a shallow decision tree—to focus on more difficult
cases. AdaBoost often achieves very high training accuracy, with R² and
EVS values approaching 0.9997, and low values for RMSE and MAE. This
performance explains its strong ability to learn from training data and
effectively capture relevant patterns.However, like GBR, AdaBoost also
suffers from overfitting, as is evident from its performance on test data.
Although the drop in R² and EVS scores is less pronounced compared to
GBR, error metrics such as RMSE and MAE increase sharply—sometimes
by 10 to 25 times their training values. The mean and maximum absolute
errors also increase significantly, indicating that the model’s predictive
stability deteriorates when faced with new data. These problems stem
from AdaBoost’s tendency to focus too much on outliers or events that are
difficult to predict, especially in the absence of sufficient regularization. As
a result, its performance can become unstable in production environments
where consistent behavior on unseen data is essential.

The dataset consists of 20 entries, each describing five essential system
performance indicators recorded under different operational loads: average
response time, CPU utilization, memory utilization, concurrent users, and
the calculated performance score. Analysis of these observations reveals
meaningful patterns in system performance under different conditions.The
average response time shows considerable variation from 180 MS to 520
MS. Shorter response times, such as 180 MS and 185 MS, are consistently
associated with higher performance scores (e.g., 91.2 and 90.5). In contrast,
response times beyond 470 MS correspond to significantly lower scores -
for example, a 520 MS response time leads to a score of 54.7. This clear
negative correlation indicates that increased response times reduce system
performance and user satisfaction.CPU utilization shows a comparable
trend. Values range from 59.2% to 89.1%, with higher CPU utilization
generally associated with lower performance outcomes. For example,
utilization levels above 85% are associated with poor scores - 88.2% and
86.4% CPU utilization correspond to scores of 56.4 and 58.3, respectively.
On the other hand, performance scores above 87 are typically associated
with CPU loads below 65%, indicating that optimal performance occurs
under moderate processing demands.Memory utilization, which ranges
from 1550 MB to 3350 MB, further reinforces these patterns. Systems
that consume less memory - specifically between 1550 MB and 1800 MB
- tend to provide better results. The lowest memory utilization observed
(1550 MB) corresponds to the highest recorded score of 92.4. In contrast,
higher memory requirements above 3100 MB are consistently associated
with reduced performance, underscoring the performance impact of
excessive memory consumption.Concurrent users also significantly affect
performance. Low user counts (35–50 users) are typically associated with
scores above 87, indicating that the system performs well under light
loads. As the number of users increases to 120 or more, performance
drops sharply—for example, scenarios with 130 and 140 users show scores
of 56.4 and 54.7, respectively—highlighting the system stress under high
user concurrency.

Citation: Peram, S. R. (2025). Machine Learning-Based performance evaluation and memory usage forecasting for intelligent systems. Journal of Artificial Intelligence and
Machine Learning, 3(3), 275. https://doi.org/10.55124/jaim.v3i3.275

3

© Peram, S. R. at al.

Analysis and Dissection

Table 1: This descriptive statistics table summarizes the performance metrics collected from 20 load test scenarios

Avg Response Time CPU Utilization Memory Usage Concurrent Users Computed performance score

count 20.000 20.000 20.000 20.000 20.000

mean 321.750 73.265 2317.500 78.750 75.765

std 122.219 9.493 584.284 31.639 12.456

min 180.000 59.200 1550.000 35.000 54.700

25% 217.500 67.250 1875.000 57.500 66.975

50% 290.000 72.200 2200.000 73.500 77.900

75% 421.250 80.100 2687.500 95.000 85.600

max 520.000 89.100 3350.000 140.000 92.400

This descriptive statistics table summarizes the performance metrics collected from 20 load test scenarios. It highlights important trends in system
behavior and resource utilization.Response Time and User Load:The system had an average response time of 321.75 milliseconds, with a significant
standard deviation of 122.22 MS, indicating variation in performance. Response times ranged from 180 MS to 520 MS, indicating a decrease in
performance under heavy loads.

The number of concurrent users averaged 78.75, ranging from 35 to 140, reflecting the tests conducted under a variety of load conditions.Resource
Usage: CPU utilization remained consistently high, averaging 73.27%, with an interquartile range of 67.25% to 80.10%. The standard deviation of
9.49% indicates relatively stable CPU demand. Memory usage averaged 2,317.5 MB, but showed significant variation from 1,550 MB to 3,350 MB,
with a standard deviation of 584.28 MB, indicating that the measured memory consumption was under system stress.Performance Rating: The average
performance score was 75.77 on a 100-point scale, with values ranging from 54.7 to 92.4. The median score of 77.9 - slightly above the median - indicates
a slightly left-skewed distribution. Most scenarios fell within the midpoint range of 66.98 to 85.60, indicating generally acceptable system performance,
although the lowest score of 54.7 points was for some of the less-than-optimal configurations.

Figure 1: Effect of Process Parameters

Citation: Peram, S. R. (2025). Machine Learning-Based performance evaluation and memory usage forecasting for intelligent systems. Journal of Artificial Intelligence and
Machine Learning, 3(3), 275. https://doi.org/10.55124/jaim.v3i3.275

4

© Peram, S. R. at al.

The scatter plot matrix highlights the strong interdependence among key system performance metrics. Variables such as average response time, CPU
utilization, memory utilization, and number of concurrent users all show positive correlations, indicating that increasing system load can simultaneously
degrade performance across multiple dimensions.The histograms on the diagonal illustrate the distribution of each metric: response time and memory
utilization are skewed to the right, indicating occasional high load or stress conditions. In contrast, CPU utilization follows a more normal distribution
centered around 70-80%, while the distribution of concurrent users is bimodal, indicating the presence of two distinct load situations or test conditions.
The performance score shows a clear negative correlation with the other metrics, confirming that higher response times and resource utilization are
associated with lower performance outcomes. The scatter plots also reveal largely linear relationships between the variables, with significant clustering
at lower values, which may indicate different system states or phases of testing.

Figure 2: Correlation heatmap

The correlation matrix reveals very strong correlations between the system performance metrics. Response time, CPU utilization, memory
consumption, and concurrent user count all exhibit nearly perfect positive correlations (0.98 to 1.00), indicating a high degree of interdependence driven
by shared underlying system load factors.In contrast, the performance score is completely negatively correlated with all other metrics (-0.99 to -1.00),
clearly demonstrating that it acts as an inverse indicator of overall system health. These patterns highlight memory consumption as a particularly strong
predictor of system performance, indicating that resource utilization metrics closely track system degradation under stress.Consistently high correlation
values indicate very little data variability or noise, indicating that any single variable can act as a reliable predictor of the others. This makes the dataset
well suited for machine learning models aimed at predicting performance outcomes.

Table 2. AdaBoost Regression Memory Usage Train and Test performance
metrics

AdaBoost Regression Train Test

R2 0.9997 0.9615

EVS 0.9997 0.9678

MSE 85.4167 11562.5000

RMSE 9.2421 107.5291

MAE 3.7500 93.7500

Max Error 25.0000 200.0000

MSLE 0.0000 0.0038

Med AE 0.0000 75.0000

The AdaBoost regression model shows a significant gap between
training and testing performance, clearly indicating classic overfitting
behavior. During training, the model achieves almost perfect accuracy,

with an R² score of 0.9997 - which explains 99.97% of the variance.
This is reinforced by an equally high explained variance score (EVS)
of 0.9997. The error metrics are very low: the root mean square error
(RMSE) is just 9.24 MB and the mean absolute error (MAE) is 3.75 MB.
Notably, the mean absolute error is 0.0000 MB, meaning that half of the
predictions were correct, while the worst-case error during training is
only 25 MB.However, the model’s performance drops significantly on the
test data, revealing its limited generalization ability. The R² score drops
to 0.9615 - still indicating good predictive power - but the increase in
error metrics is substantial. While the EVS improves slightly to 0.9678,
the RMSE rises sharply to 107.53 MB and the MAE rises sharply to
93.75 MB – 25 times higher than the training one. The maximum error
rises to 200 MB, eight times higher than the training maximum, and the
average absolute error rises to 75 MB, indicating that at least half of the
test predictions deviate by this amount.The mean square logarithmic error
(MSLE) increases from 0.0000 to 0.0038, which is relatively low, but still
reflects poor performance. Overall, the sharp increase in all error metrics
between the training and test phases confirms that while AdaBoost fits

Citation: Peram, S. R. (2025). Machine Learning-Based performance evaluation and memory usage forecasting for intelligent systems. Journal of Artificial Intelligence and
Machine Learning, 3(3), 275. https://doi.org/10.55124/jaim.v3i3.275

5

© Peram, S. R. at al.

the training data exceptionally well, it struggles to generalize. Instead
of broad, generalizable trends, the model may have captured noise and
overly specific patterns – highlighting the need for better regularization
techniques or simplification of the model to improve its performance on
unseen data.

Figure 3: AdaBoost RegressionMemory Usage Training

The AdaBoost training results indicate excellent model accuracy, with
predicted memory usage values closely matching the actual values along
the diagonal reference line. The model performs well over the entire
memory usage range (1750–3250 MB), showing minimal deviation from
the best predictions.The close clustering of data points near the diagonal
indicates both low bias and low variance during training. The clear linear
pattern indicates that AdaBoost effectively captured the underlying data
structure without any signs of overfitting. Furthermore, the consistent
accuracy of the model across varying memory levels reflects a strong
understanding of the relationship between input features and memory
consumption.

Figure 4: AdaBoost RegressionMemory Usage Testing

The AdaBoost test results show a slight decline in prediction accuracy
compared to the training phase, which is typical and expected. While
many predictions still fall closely to the diagonal reference line, there is
significant dispersion—especially within the middle range of memory
usage (2000–2500 MB).The model maintains good accuracy at the lower
and upper ends of the memory range, but shows increased uncertainty
for intermediate values. This pattern indicates mild overfitting, where
the model may have adapted too closely to the training data. However,
overall performance is solid.The preservation of a clear linear trend
in the predictions indicates that AdaBoost successfully captured key
relationships in the data, rather than simply memorizing the training set.
These results indicate that the model generalizes reasonably well, albeit
with slightly reduced accuracy when applied to new data.

Table 3. Gradient Boosting RegressionMemory UsageTrain and Testperformance
metrics

Gradient Boosting Regression Train Test

R2 1.0000 0.9623

EVS 1.0000 0.9689

MSE 0.0000 11296.0219

RMSE 0.0000 106.2827

MAE 0.0000 88.7038

Max Error 0.0000 200.0000

MSLE 0.0000 0.0037

Med AE 0.0000 83.0048

Among the models evaluated, the gradient boosting regression
algorithm exhibits the most severe overfitting. It provides flawless
training performance, with both the R² score and the explained variance
score (EVS) reaching exactly 1.0000 – indicating that the model accounts
for 100% of the variance in the training data. All error measures during
training – mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE), maximum error, mean absolute error and
mean square logarithmic error (MSLE) – are exactly 0.0000, reflecting
correct predictions on every training instance. Such results strongly
suggest that the model has memorized the training data entirely, rather
than generalizing learning patterns.The experimental results highlight
the effects of this overfitting. Although the R² score is relatively high at
0.9623 – indicating that the model retains some predictive ability – the
sharp rise in the error measures reveals poor generalization. The RMSE
increases from zero to 106.28 MB, while the MAE increases to 88.70 MB,
both indicating a drastic increase. The maximum error matches the worst-
case value of AdaBoost at 200 MB, and the mean absolute error reaches
83.00 MB, meaning that half of the predictions in the test set deviate by
this amount or more.Despite the slight improvement in EVS to 0.9689
and the still low MSLE of 0.0037, these figures cannot compensate for
the dramatic increase in overall error. The perfect performance on the
training data, combined with the sharp drop in test accuracy, clearly
illustrates that gradient boosting, while very obvious, can overfit if not
properly regularized. The tendency of the model to memorize rather than
generalize limits its usefulness in real-world memory-intensive prediction
tasks, where robust performance on unseen data is essential.

Citation: Peram, S. R. (2025). Machine Learning-Based performance evaluation and memory usage forecasting for intelligent systems. Journal of Artificial Intelligence and
Machine Learning, 3(3), 275. https://doi.org/10.55124/jaim.v3i3.275

6

© Peram, S. R. at al.

Figure 5: Gradient Boosting RegressionMemory Usage Training

Gradient boosting exhibits excellent training performance, with
predicted values closely aligned on the diagonal reference line – indicating
near-perfect accuracy. The model performs exceptionally well across the
entire memory usage range, showing almost no deviation from expected
values.This precise alignment suggests that gradient boosting effectively
captured the detailed relationships within the training data. Consistent
accuracy across all usage levels reflects well-tuned parameters and efficient
boosting iterations. Tightly clustered predictions indicate minimal residual
error and a comprehensive understanding of data patterns.However, such
high accuracy can also indicate potential overfitting during training,
emphasizing the importance of evaluating the model’s performance on
test data to determine its true generalization ability.

Figure 6: Gradient Boosting RegressionMemory Usage Testing

The results of the gradient boosting experiment reveal a significant drop
in performance compared to the training phase, indicating significant
overfitting. While some predictions are accurate, there is considerable
scatter—especially in the low memory usage range (1750–2000 MB)—
which indicates a lack of consistency in the model’s generalization.This
discrepancy suggests that the model may have picked up noise or over
specific patterns from the training data, rather than learning relationships
that are broadly applicable. The inconsistent performance across different

memory levels suggests that the model is not suitable for unseen data.

Table 4. Support Vector Regression Memory Usage Train and Test performance
metrics

Support Vector Regression Train Test

R2 0.9958 0.9818

EVS 0.9963 0.9835

MSE 1141.8442 5449.0504

RMSE 33.7912 73.8177

MAE 24.1593 67.2627

Max Error 77.6901 106.6206

MSLE 0.0002 0.0014

Med AE 15.4559 69.1071

The three models evaluated, Support Vector Regression (SVR)
provides the most balanced and reliable performance, demonstrating
strong generalization with minimal signs of overfitting. During training,
this model achieves a high R² score of 0.9958, explaining 99.58% of
the variance in the data. This high level of accuracy is reinforced by an
explained variance score (EVS) of 0.9963. Error metrics remain modest,
with RMSE of 33.79 MB and MAE of 24.16 MB, indicating effective fit
without overfitting. The maximum error of 77.69 MB and the mean
absolute error of 15.46 MB indicate consistent performance across the
dataset, while the low MSLE of 0.0002 confirms the minimum logarithmic
deviation.Experimental results further highlight the strong generalization
ability of SVR. The R² score from training decreases slightly to 0.9818, a
modest 1.4% decline, while the EVS similarly decreases to 0.9835 - both
metrics still reflect excellent predictive performance. The RMSE increases
to 73.82 MB, representing a 2.2-fold increase from training, which is
significantly less than the ten-fold increases seen with AdaBoost and
Gradient Boosting. The MAE increases to 67.26 MB and the maximum
error increases to 106.62 MB - both manageable increases that indicate
stable model behavior.The mean absolute error increases to 69.11 MB, and
the MSLE grows to 0.0014, but these changes remain relatively modest,
especially compared to other models. Overall, the SVR clearly captures
the underlying patterns in the data without being misled by noise or
overfitting to training-specific details. The short performance gap between
training and testing underscores SVR’s well-balanced complexity and
generalization, making it a highly reliable choice for real-world memory
usage prediction, where consistency on unseen data is paramount.

Figure 7: Support Vector Regression Memory Usage Training

Citation: Peram, S. R. (2025). Machine Learning-Based performance evaluation and memory usage forecasting for intelligent systems. Journal of Artificial Intelligence and
Machine Learning, 3(3), 275. https://doi.org/10.55124/jaim.v3i3.275

7

© Peram, S. R. at al.

Support Vector Regression (SVR) exhibits strong training performance,
with predicted values closely aligned along the diagonal reference line.
The model maintains high accuracy across all memory usage levels,
showing only slight deviations from the best predictions.The clear linear
pattern indicates that SVR effectively captured key relationships within
the training data. The dense clustering of data points reflects low training
error and indicates that the model achieved a well-balanced trade-
off between complexity and accuracy.The consistent results across the
memory range indicate successful kernel selection and effective parameter
tuning. Overall, the model’s solid training performance indicates that SVR
not only captured key data patterns but also preserved model simplicity—a
key factor for strong generalization to new data

Figure 8: Support Vector Regression Memory Usage Testing

The SVR test results indicate decent generalization, with a moderate
performance degradation compared to the training phase. Despite a
slightly increased scatter in the predictions, the overall alignment with
the diagonal reference line is satisfactory.The model performs well at most
memory usage levels, although accuracy drops slightly in the mid-range.
Unlike gradient boosting, SVR maintains a very stable balance between
training and testing performance, which reflects its strong generalization
ability.These results suggest that SVR achieved a useful compromise
between fitting the training data and maintaining prediction accuracy
on unseen data. This balanced performance highlights SVR as a reliable
option for predicting memory usage in real-world or production settings.

Conclusion
 The performance measurement program at Thompson emerged as a

robust and efficient solution for validating application performance before
moving to production. Through the integration of automated testing tools,
performance diagnostics, and machine learning models, the program
developed a structured methodology for identifying performance issues,
refining system operations, and improving the user experience. Apache
JMeter played a key role in load testing, effectively replicating real-world
user interactions to assess key performance metrics including response
time, CPU utilization, memory utilization, and concurrent user load
under various operating conditions. The insights gained from these
simulations allowed the team to accurately identify design inefficiencies
and fine-tune system limitations.Automation was another cornerstone
of the program, achieved through the development and deployment of
shell and Perl scripts. These scripts streamlined essential processes such
as launching test runs, aggregating results, and managing distributed

environments, improving reliability and test consistency.

To complement this automation, custom Java applications were
developed to analyze and analyze the structured log data, generating
detailed reports that provided valuable performance insights across
different application builds.A unique feature of the project was the use of
machine learning regression models – Support Vector Regression (SVR),
Adaboost, and Gradient Boosting – to predict memory consumption
based on input metrics. SVR distinguished itself as the most reliable
model, providing balanced performance with minimal overfitting and
strong generalization across datasets. In comparison, ensemble models,
while highly accurate during training, showed reduced performance on
unseen data, indicating a tendency to fit the training data too closely.
Beyond improving testing procedures, the project fostered a culture of
continuous refinement and data-driven decision-making. Improvements
in context optimization, configuration flexibility, and automated alerting
systems led to faster problem resolution and better software reliability.
Extensive testing significantly reduced the chances of structural
performance issues reaching production, ultimately strengthening user
confidence and satisfaction.

Reference

1.	 Bititci, Umit, Patrizia Garengo, Viktor Dörfler, and Sai Nudurupati.
“Performance measurement: challenges for tomorrow.” International journal
of management reviews 14, no. 3 (2012): 305-327.

2.	 Board on Health Care Services, Committee on Redesigning Health Insurance
Performance Measures, Payment, and Performance Improvement Programs.
“Performance measurement: accelerating improvement.” (2006).

3.	 Folan, Paul, and Jim Browne. “A review of performance measurement:
Towards performance management.” Computers in industry 56, no. 7 (2005):
663-680.

4.	 Eccles, Robert G. “The performance measurement manifesto.” Harvard
business review 69, no. 1 (1991): 131-137.

5.	 Nudurupati, Sai S., Umit S. Bititci, Vikas Kumar, and Felix TS Chan. “State
of the art literature review on performance measurement.” Computers &
Industrial Engineering 60, no. 2 (2011): 279-290.

6.	 Ghalayini, Alaa M., and James S. Noble. “The changing basis of performance
measurement.” International journal of operations & production management
16, no. 8 (1996): 63-80.

7.	 Bassioni, Hesham A., Andrew DF Price, and Tarek M. Hassan. “Performance
measurement in construction.” Journal of management in engineering 20, no.
2 (2004): 42-50.

8.	 Sridhar Kakulavaram. (2024). Artificial Intelligence-Driven Frameworks for
Enhanced Risk Management in Life Insurance. Journal of Computational
Analysis and Applications (JoCAAA), 33(08), 4873–4897. Retrieved from
https://www.eudoxuspress.com/index.php/pub/article/view/2996

9.	 Franco‐Santos, Monica, Mike Kennerley, Pietro Micheli, Veronica Martinez,
Steve Mason, Bernard Marr, Dina Gray, and Andrew Neely. “Towards a
definition of a business performance measurement system.” International
journal of operations & production management 27, no. 8 (2007): 784-801.

10.	 Ramancha, N. K., & Ballamudi, S. (2023). Leveraging Machine Learning for
Predictive Modeling in 3D Printing of Composite Materials: A Comparative
Study. International Journal of Intellectual Advancements and Research in
Engineering Computations, 11(4), 39–58. https://doi.org/10.61096/ijiarec.
v11.iss4.2023.39-58

11.	 Neely, Andy. “The performance measurement revolution: why now and what
next?.” International journal of operations & production management 19, no.
2 (1999): 205-228.

Citation: Peram, S. R. (2025). Machine Learning-Based performance evaluation and memory usage forecasting for intelligent systems. Journal of Artificial Intelligence and
Machine Learning, 3(3), 275. https://doi.org/10.55124/jaim.v3i3.275

8

© Peram, S. R. at al.

12.	 Micheli, Pietro, and Luca Mari. “The theory and practice of performance
measurement.” Management accounting research 25, no. 2 (2014): 147-156.

13.	 Lohman, Clemens, Leonard Fortuin, and Marc Wouters. “Designing a
performance measurement system: A case study.” European journal of
operational research 156, no. 2 (2004): 267-286.

14.	 Dachepalli. V, “Intelligent Resource Allocation in ERP with Machine
Learning” Journal of Artificial intelligence and Machine Learning., 2025, vol.
3, no. 2, pp. 1–18. doi: http://dx.doi.org/10.55124/jaim.v3i2.257

15.	 Bourne, Mike, Andy Neely, John Mills, and Ken Platts. “Implementing
performance measurement systems: a literature review.” International journal
of business performance management 5, no. 1 (2003): 1-24.

16.	 Keong Choong, Kwee. “Understanding the features of performance
measurement system: a literature review.” Measuring business excellence 17,
no. 4 (2013): 102-121.

17.	 Taticchi, Paolo, Flavio Tonelli, and Luca Cagnazzo. “Performance
measurement and management: a literature review and a research agenda.”
Measuring business excellence 14, no. 1 (2010): 4-18.

18.	 Neely, Andy, Mike Gregory, and Ken Platts. “Performance measurement
system design: A literature review and research agenda.” International journal
of operations & production management 25, no. 12 (2005): 1228-1263.

19.	 Xiao, Xiongxin, Tingjun Zhang, Xinyue Zhong, Wanwan Shao, and Xiaodong
Li. “Support vector regression snow-depth retrieval algorithm using passive
microwave remote sensing data.” Remote sensing of environment 210 (2018):
48-64.

20.	 Sridhar Kakulavaram. (2022). Life Insurance Customer Prediction and
Sustainbility Analysis Using Machine Learning Techniques. International
Journal of Intelligent Systems and Applications in Engineering, 10(3s), 390 –.
Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7649

21.	 Wu, Chun-Hsin, Jan-Ming Ho, and Der-Tsai Lee. “Travel-time prediction with
support vector regression.” IEEE transactions on intelligent transportation
systems 5, no. 4 (2004): 276-281.

22.	 Yu, Pao-Shan, Shien-Tsung Chen, and I-Fan Chang. “Support vector
regression for real-time flood stage forecasting.” Journal of hydrology 328, no.
3-4 (2006): 704-716.

23.	 Yang, Haiqin, Kaizhu Huang, Irwin King, and Michael R. Lyu. “Localized

support vector regression for time series prediction.” Neurocomputing 72,
no. 10-12 (2009): 2659-2669.

24.	 Luo, Xiangang, Xiaohui Yuan, Shuang Zhu, Zhanya Xu, Lingsheng Meng,
and Jing Peng. “A hybrid support vector regression framework for streamflow
forecast.” Journal of Hydrology 568 (2019): 184-193.

25.	 Meddage, D. P. P., Imesh Udara Ekanayake, A. U. Weerasuriya, and C. S.
Lewangamage. “Tree-based regression models for predicting external wind
pressure of a building with an unconventional configuration.” In 2021
Moratuwa Engineering Research Conference (MERCon), pp. 257-262. IEEE,
2021.

26.	 Nevendra, Meetesh, and Pradeep Singh. “Software bug count prediction via
AdaBoost. R-ET.” In 2019 IEEE 9th international conference on advanced
computing (IACC), pp. 7-12. IEEE, 2019.

27.	 Li, Dandan, Shuzhen Yao, Yu-Hang Liu, Senzhang Wang, and Xian-He Sun.
“Efficient design space exploration via statistical sampling and AdaBoost
learning.” In Proceedings of the 53rd Annual Design Automation Conference,
pp. 1-6. 2016.

28.	 Sen, Susmita, Sumit Saha, Sudipta Chaki, Payel Saha, and Pijush Dutta.
“Analysis of PCA based adaboost machine learning model for predict mid-
term weather forecasting.” Computational Intelligence and Machine Learning
2, no. 2 (2021): 41-52.

29.	 Yifan, Duan, Lu Jialin, and Feng Boxi. “Forecast model of breast cancer
diagnosis based on RF-AdaBoost.” In 2021 international conference on
communications, information system and computer engineering (CISCE),
pp. 716-719. IEEE, 2021.

30.	 Landry, Mark, Thomas P. Erlinger, David Patschke, and Craig Varrichio.
“Probabilistic gradient boosting machines for GEFCom2014 wind
forecasting.” International Journal of Forecasting 32, no. 3 (2016): 1061-1066.

31.	 Mei, Zhen, Tao Zhao, and Xiangpeng Xie. “Hierarchical fuzzy regression tree:
A new gradient boosting approach to design a TSK fuzzy model.” Information
Sciences 652 (2024): 119740.

32.	 Zhang, Huimin, Xingchen Hu, Xiubin Zhu, Xinwang Liu, and Witold
Pedrycz. “Application of Gradient Boosting in the Design of Fuzzy Rule-
Based Regression Models.” IEEE Transactions on Knowledge and Data
Engineering (2024).

33.	 Kumar, Praveen, Mansoor Alruqi, H. A. Hanafi, Prabhakar Sharma,
and V. Vicki Wanatasanappan. “Effect of particle size on second law of
thermodynamics analysis of Al2O3 nanofluid: application of XGBoost and
gradient boosting regression for prognostic analysis.” International Journal of
Thermal Sciences 197 (2024): 108825.

34.	 Ponraj, Abraham Sudharson, and T. Vigneswaran. “Daily evapotranspiration
prediction using gradient boost regression model for irrigation planning.”
The Journal of Supercomputing 76, no. 8 (2020): 5732-5744.

