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This research examines how focusing on the evaluation of the efficacy of five 
machine learning models: Maxor Min, AdaBoost, Bagging, Random Forest and Decision 
Tree. The Adjoint Ratio Assessment (ARAS) method was applied to establish the models 
are analyzed based on six evaluation parameters: precision, accuracy, recall, log loss, 
MCC (Matthews’s correlation coefficient), and model complexity. Research Significance: 
The significance of this research is the systematic assessment of machine learning models 
intended for supply chain optimization. It provides insights into model selection, ensuring 
the adoption of algorithms that align with operational goals such as forecasting demand, 
optimizing inventory, and risk management.  Methodology: The ARAS method is used to 
rank models based on their performance across evaluation parameters. This approach 
ensures a thorough evaluation of the advantages and disadvantages of each model, aiding 
supply chain practitioners in making informed decisions.  

Adaboost Adaptive Boosting, commonly known as AdaBoost, is a technique of 
ensemble learning that merges several ineffective classifiers to produce a robust predictive 
model. In the field of supply chain management, it is often utilized for activities like 
demand forecasting and anomaly detection. the one of AdaBoost ability to focus on 
misclassified events during training is particularly useful in noisy environments. 
However, its sensitivity to outliers and high computational demands for large datasets can 
limit its scalability in some applications.  

Random Forest is a robust ensemble method that builds multiple decision trees and 
combines their outcomes to. Its ability to handle complex datasets makes Random Forest 
a reliable choice in a variety of situations. Decision Tree: Decision tree models are simple 
but powerful tools To make decisions. Their application in supply chain is extensive 
scenarios such as supplier selection, inventory categorization, and shipment prioritization. 
Packing: Bootstrap aggregation, or packing, improves model consistency and accuracy by 
training multiple versions of the same model on different data subsets and combining their 
predictions. In supply chain applications, packing is particularly useful for reducing 
variance and improving forecast reliability. Its ability to use multiple data sources ensures 
robust performance in Jobs like demand forecasting and stock control.  

Accuracy measures the overall correctness A model To make decisions. Their 
application in supply chain is extensiveIn supply chain situations, accuracy is important 
for tasks such as demand forecasting and product classification. While high accuracy 
indicates strong general performance, it does not fully reflect a model’s ability to handle 
unbalanced datasets. Precision: Accuracy evaluates the trustworthiness of affirmative 
forecasts, In supply chain applications such as fraud detection or quality control, high 
accuracy ensures that false positives are minimized, saving time and resources in decision 
making.  

Recall (or sensitivity) evaluates how effectively a model can recognize true positives 
from all true positives. This parameter essential for detecting rare but critical events in 
supply chain operations such as stockouts or supplier disruptions.Log Loss: Log Loss 
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estimates the uncertainty in probabilistic predictions by imposing a higher penalty for 
incorrect predictions. In supply chain optimization, it is most useful for models that output 
probabilities, such as those predicting shipment delays or demand spikes. Lower log loss 
values indicate higher confidence in the predictions. Matthews Correlation Coefficient 
(MCC): The MCC offers a measure of parity model performance, one is especially 
valuable in asymmetric datasets, such as those found in supply chain risk management, 
where accurate classification across all classes is important. Model Complexity: Model 
complexity reflects the complexity of the machine learning model, including the number 
of parameters, features, and computational resources required. In supply chain 
management, this is essential balance model complexity with performance.. Result: 
Random Forest emerges as the best performer due to its balance across metrics, followed 
by Decision Tree and Packing, which offer strengths in recall and consistency. Maxor Min 
shows competitive performance, while AdaBoost stands out in performance but requires 
further improvement for broader applications. 

© Nitesh Kumar Ramancha. 
Corresponding author. e-mail: nkr112024@gmail.com 

Introduction 
Examination of machine learning methods and their 

relevance to risk management in supply chains. However, many 
studies concentrate on predictive performance while overlooking 
the significance of interpretation for supply chain practitioners. 
A clearer understanding of results can aid their decision-making 
regarding risk mitigation and prevention. For that case, one 
should select machine learning algorithms that have 
demonstrated their effectiveness across diverse settings and data 
inputs, irrespective of whether their models are black box or 
white box offer insight by uncovering correlations between 
feature values that result in one outcome or another.[1] Efficient 
management of plant diseases and weed detection tailored to 
specific sites necessitates spatial and temporal information of 
high density.  

A number of studies have suggested that automated disease 
detection systems (based on pattern recognition and machine 
learning) have the capability to enhance the precision and 
quicken the pace of diagnostic results. The study shows that 
there are significant advantages for ASCs that have built the ML 
capability, suggesting that it is advantageous to incorporate ML 
into decision-making processes. Given the significant expenses 
involved in investing in digital technologies and building ML 
capabilities, it is anticipated that policymakers will provide 
subsidies for investments in digital technologies and implement 
measures to reduce costs, thereby facilitating widespread use.[2]  

One potentially game-changing resource that can be 
harnessed to create superior demand forecasting models for 
entails algorithms that perform tasks without explicit 
programming. with the help of established algorithms. Learning 
algorithms can generally be divided into two types: supervised 
and unsupervised learning are numerous reviews related to data 
analytics and machine learning, but few focus specifically can be 
applied to demand forecasting within the supply chain.[3] 
Machine Learning can be generally characterized as an 

algorithm that produces outputs based on available data, without 
a predetermined learning outcome being programmed in 
advance. Instead, the ML algorithm 'learns' through iterative 
adjustments of its understanding to match the input data 
depicting real-world phenomena.[4] Unlike traditional demand 
forecasting methods, those based on Machine As machine 
learning (ML) and predictive analytics, businesses have been 
able to enhance customer involvement and the generation of 
demand forecasts that are more precise when entering new 
markets or channels.  

Another beneficial facet of the machine learning algorithm 
is that it does not require an underlying probability distribution. 
took advantage of this characteristic. Using machine learning, 
they offered a dependable solution for retailers' perishable items, 
where the ordering decision is based on the newsvendor model, 
usually assuming a normal distribution. the need for time series 
models that combine leading indicators and machine learning is 
growing. Secondly, and of greater significance, this study 
underscores the extent to which performance can be enhanced 
through the use of sophisticated forecasting techniques. [5] 
Methods of AI and machine learning; The tasks are now easier, 
and the product can be delivered within a 24-hour timeframe. 

 This research examines different instances of current along 
with the prospective developments of these techniques. Due to 
their more intelligent methods of revenue growth, Machine 
Learning techniques are increasingly necessary for industry and 
saving time a significant application of machine learning is 
forecasting customer demand. They employed machine learning 
models to process data from various business units related to the 
enterprise's supply chain, including transportation rates and 
policies, product shipping routes, and more.[6] By means of 
predictive analytics can be utilized with precisely predict 
demand, detect possible disturbances, and fine-tune inventory 
quantities. Due to its many advantages, the incorporation They 
have been employed for sorting, packaging, transporting, 
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storing, and selling in the food supply chain, showcasing their 
adaptability and ability to improve various aspects of the supply 
chain operations.[7] the supply chain and employs machine 
learning methods to identify the enterprise linked to the data 
when new information from unknown sources emerges.  

The employed machine learning algorithms are logistic 
regression, random forest, naive Bayes, decision tree, support 
vector machine, k-nearest neighbor, and multi-layer perceptron. 
employed machine learning to address substantial operational 
optimization challenges in blood supply chain management and 
clarified that machine learning can enhance operational 
decisions, as optimization models are costly in terms of 
computation and are therefore frequently unfeasible for everyday 
operational choices in organizations like nonprofit entities or 
small to medium-sized businesses.  

For this reason, the research utilizes machine learning and 
examines the findings to identify a firm that acts as the origin of 
data generated within the supply chain.[8] The search utilized 
the keywords “machine learning” as well as “supply chain risk”. 
parameters did not impose restrictions based on publication 
dates and set a restricted end date. businesses can monitor the 
state of their supply chains instantaneously with the help of the 
ML algorithm and subsequently modify their inventory and 
production plans accordingly.[9] hyperspectral imaging (HSI) 
and machine learning have shown their effectiveness as methods 
for rapid, nondestructive evaluations of quality attributes and 
encompassing topics such as the HSI imaging process, various 
types of algorithms in machine learning, and the data processing 
flow. The application of machine learning and HSI technology 
across different segments of the food supply chain, which could 
be crucial for enhancing optimization in has not been examined 
in relevant literature.[10] In the realm of supply chain 
management, blockchain's potential can be amplified through its 
combination with machine learning (ML).  

This paper offers a thorough examination of blockchain-
based supply chain management through ML, emphasizing 
decentralized approaches for traceability and transparency. We 
examine how integrating blockchain and ML can enhance 
supply chain processes, bolster traceability, and boost 
transparency. The efficacy and openness of supply chains have a 
direct impact on business performance, customer satisfaction, 
and the overall competitiveness of the industry. The objective of 
this paper aims to provide a comprehensive review of ML 
applications for management of supply chains through 
blockchain technology, focusing especially on decentralized 
approaches to achieve transparency and traceability that 
transactions are secure and resistant to alteration, protecting 
sensitive supply chain data from unauthorized access.[11] A 
multitude of factors intervene at the same time, and their 
interactions along interpret and make decision-making more 
complex.  

It is particularly evident in the area of inventory 
management, where ascertaining the ideal restocking rule 
frequently proves to be a difficult problem. the details regarding 
the resolved issues can therefore be utilized to examine 
forthcoming issues. In this regard, this method includes tenets of 
information updating, which is becoming recognized as a crucial 
mechanism for supply chain learning.[12] To achieve the 
aforementioned goals, it is necessary to implement internal and 
inter-company tasks Intelligence or ML fulfills the following 
functions; Sections of the logistics network sensitive to 
disruption; transport of goods and services; and improvement of 
operations. Supply chains are defined by the effective use of 
resources and processes by many companies to satisfy customer 
demand. The intrinsic challenge of coordinating can be 
addressed in a number of ways.[13] management of the supply 
chain. Secondly, enormous processes and data originating from 
various Supply chain parities act as origins for big data analytics, 
which can be enhanced using machine learning. The authors are 
of the opinion that this scenario has not been examined in earlier 
research. 

 when a party in the supply chain generates a transaction 
record (e.g., delivery timetable), this record is kept in a block. 
Because a block can only hold a limited amount of data, multiple 
blocks are used in sequence to store numerous transaction 
records.[14] the development of For supply chains, it is 
becoming ever more vital to obtain from a variety of sources. To 
keep a competitive edge, supply chains must conduct rapid 
analyses of large datasets with effective tools that provide 
insights for real-time decision-making. planning for supply 
chains and introduced a decision support system called the 
“Collaboration Planning Tool.”  

This tool was developed by the authors to facilitate the 
attainment of long-term sustainability in complex supply chain 
networks.[15] the capacity to predict product demand accurately 
is crucial for a supply chain. These forecasts are often required 
to be generated within a hierarchical framework that may depict 
geographic areas or product families. As far as we know, the 
majority of studies the literature on hierarchical forecasting 
within the supply chain emphasizes univariate analysis from a 
variety of sources. To keep a competitive edge, supply 
chains[16] The suggested method avoids the necessity of 
explicitly encoding supply chain expertise as well.  

The results indicate that the GNN approach outperforms 
existing methods for predicting links in supply network 
connections across three industrial case studies. that supply 
chain maps ought to depict the relationships and memberships of 
companies within the network, as well as details [17] While 
advanced technologies can enhance the logistics chain 
framework for conducting statistical analyses of key 
performance indicators or for predicting supply chain demands.  

An improved the in the management of supply chains 
presents difficulties. the logistics chain positively affects all 
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company functions and the entire supply chain.[19] The drug 
supply chain management system is constructed using 
Hyperledger fabrics, allowing it to provide constant monitoring 
and tracking of drug deliveries in the smart pharmaceutical 
industry. On the other hand, distribution of fake 
pharmaceuticals, an effective system that can follow and oversee 
the delivery of medication at every phase—from the provider’s 
unprocessed materials to production, logistics, pharmacies, 
medical facilities, and finally to end users.[20] 
MATERIALS AND METHOD 

Alternative values: The supply chain industry has been 
transformed by machine learning, which has made it possible for 
more efficient and intelligent decision-making. Advanced 
AdaBoost, Random Forest, Decision Tree, and other machine 
learning techniques  

Bagging, are widely used to improve different supply chain 
procedures like demand forecasting, inventory control, and 
logistics optimization. These algorithms provide accurate 
predictions and robust models to handle the intricate and fluid 
characteristics of supply chain operations. Below is an 
exploration of how these techniques contribute to supply chain 
management. 

AdaBoost: AdaBoost (Adaptive Boosting) In supply chain 
applications, AdaBoost is often used to improve demand 
forecasting accuracy by identifying patterns in historical data. It 
is particularly effective in scenarios where the data includes 
noise or outliers, as it iteratively focuses on the most challenging 
samples during training. This adaptability ensures reliable 
predictions, helping businesses coordinate production timetables 
and inventory quantities with market demand. 

Random Forest: Random Forest is a flexible ensemble 
technique that relies on decision trees, functioning by 
constructing a multitude of trees and merging their outcomes. 
classify products, optimize routing in logistics, and detect 
anomalies in inventory systems. The algorithm's robustness and 
ability to handle high-dimensional data make it ideal for 
analyzing complex supply chain networks. By leveraging 
Random Forest, companies can achieve better risk assessment 
and make data-driven strategic decisions. 

Decision Tree: Decision Trees are basic models in machine 
learning that split information into branches depending on 
characteristic values, resulting in a decision output. These are 
extensively used in supply chain scenarios for decision-making, 
such as selecting suppliers, categorizing products, and 
prioritizing shipments. Their simplicity and interpretability allow 
supply chain managers to visualize the decision process and gain 
insights into key factors influencing operations. Decision trees 
are particularly useful for tackling classification problems, such 
as distinguishing between fast-moving and slow-moving 
inventory. 

Bagging: Another ensemble technique that enhances model 
stability and accuracy is Bagging (Bootstrap Aggregating). 
Through the integration of several base models that have been 
trained on various subsets of the data. In supply chains, bagging 
enhances the reliability of forecasting and optimization tasks by 
reducing the variance of predictions. For example, it can be 
applied to mitigate forecasting errors in demand prediction 
models, enabling businesses to maintain optimal stock levels and 
reduce wastage. Bagging’s ability to handle diverse data sources 
ensures robust performance in complex supply chain 
environments. 

Evolution parameter: Machine learning is now essential to 
modern supply chain management, facilitating data-driven 
decisions that enhance efficiency and responsiveness. operate 
within the supply chain context, metrics like Accuracy, 
Precision, Recall, Log Loss, Matthews Correlation Coefficient 
(MCC), and Model Complexity play critical roles. These metrics 
ensure the models are not only effective but also aligned with the 
operational goals of supply chain systems. 

Accuracy: In supply chain management, accuracy is crucial 
for activities such as demand forecasting and inventory 
classification, where the objective is to minimize errors. While 
accuracy provides a general measure of performance, it may not 
always be sufficient in imbalanced datasets, such as those found 
in rare demand spikes or unusual supply chain disruptions. 

Precision: It exists particularly important in supply chain 
applications like fraud detection in procurement or anomaly 
detection in logistics, where false positives can lead to 
unnecessary interventions or resource allocation. A the 
predictions made by the model can be trusted, thanks to the high 
precision score and actionable. 

Recall: Recall, or sensitivity, calculates the ratio of true 
positive predictions to all actual positive cases. In contexts 
related to supply chains, recall is critical for identifying rare but 
significant events, such as stockouts or supplier failures. High 
recall ensures that the model captures most of the critical 
instances, even if it occasionally sacrifices precision. This trade-
off is often acceptable if the cost of not attending to a crucial 
event is high. 

Log Loss: Log Loss (Logarithmic Loss) evaluates the 
uncertainty of probabilistic predictions by penalizing incorrect 
predictions more heavily. In supply chain optimization, Log 
Loss is applicable for models that generate probabilities, like 
predicting the likelihood of a shipment delay or demand surge. 
Lower Log Loss values indicate a well-calibrated model that 
provides reliable confidence scores, aiding in risk management 
and decision-making. 

Matthews Correlation Coefficient (MCC): MCC is a 
strong metric that takes into account true positives, true 
negatives, false positives, and false negatives in order to deliver 
a balanced assessment of a model's performance. It exists 
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especially valuable in supply chain scenarios with imbalanced 
data, such as predicting rare transportation disruptions or quality 
control failures. An MCC score close to 1 indicates a strong 
model capable of making accurate predictions across all classes. 

Model Complexity: Model Complexity denotes the 
intricacy of a machine learning model, which consists of 
features, parameters, and computational requirements. It is 
crucial in supply chain management to strike a balance between 
the complexity of models and their interpretability and 
scalability. Although sophisticated models such as deep neural 
networks can reach a high level of accuracy, simpler models like 
linear regression or decision trees are often preferred for their 
ease of implementation and faster processing in real-time 
applications. Striking the right balance ensures that models are 
both effective and operationally feasible. 

 
ARAS 

The document presents a novel evaluating the microclimate 
in office rooms is demonstrated to exemplify the ARAS method 
described. The aim of the purpose of the case study is to assess 
the workplace’s indoor climate and to pinpoint measures that can 
enhance the environment there. the analysis suggests the 
following criteria for evaluating inside climate: air turnover in 
the premises, humidity levels, temperature, light intensity, 
airflow rate, and dew point. The issue faced by to make a 
decision involves assessing a small set of alternatives to identify 
the best one and rank them from most to least favorable, classify 
them into established homogeneous categories, or assess how 
effectively each option meets all criteria at once. The problem 
was solved using the method of validate the choice of effective 
alternatives for structures and technologies. the optimal 
alternative will employ a new ARAS method.  

A typical MCDM problem consists of the challenge of 
arranging distinctly outlined by multiple decision criteria that 
need to be considered at the same time. Based on the ARAS 
method, the value of a utility function that reflects the complex 
relative efficiency of a viable alternative is directly connected to 
the relative influence of the values and weights of the main 
criteria considered in a project. Professionals articulated the 

view that a double-layered floor structure for the cellar would be 
the most practical and carry lower risk while in use. Experts also 
indicated that, given the complex conditions at the start of the 
work, technical solutions should be as simple as possible and 
free of intricate details. For faculty websites, it is expected that 
the information provided is accurate, making this criterion of 
little significance. Nonetheless, the presence of inaccurate 
information on the faculty website can greatly affect the quality 
of the site and, consequently, the faculty's reputation. During the 
collection of the ARAS dataset, we loosened that assumption 
and gathered data from homes with multiple residents. ARAS 
datasets also have the important characteristic of comprising a 
greater diversity of human activities as well as a greater number 
of activity instances. A central processing unit collected all 
sensor data and oversaw the synchronization of the labels and 
sensor data. It is assumed by System ARAS that LERS can be 
used for the extraction of classification rules. In this manner, 
ARAS only needs to ascertain if these relationships are indicated 
by LERS, as opposed to confirming the accuracy of specific 
relationships. In the same vein, Based on each application's 
anticipated peak bandwidth needs, a circuit-switched network 
allots a certain percentage of the bandwidth to it. Unless idle 
times are filled with non-real-time traffic, the bursty nature of 
real-time traffic leads to low effective bandwidth usage. as we'll 
talk about later.  

The earliest due date determines the packet insertion priority 
into the output queue for these methods. A packet's due date is 
determined by adding the link deadline for this node to its 
logical arrival time. It is crucial for the dependability of wind-
power measurements to establish the location of wind 
observation stations (WOS) appropriately. Such a center should 
be situated in an ideal location that can particularly represent the 
area. The bulletin for wind and solar measurements took effect 
upon publication. The final aim is to identify the most 
appropriate site for a potential WOS, in light of the other levels 
of hierarchy. The second level of hierarchy contains main 
criteria. To establish such criteria, expertise is necessary, as an 
incorrect or insufficient determination will lead to erroneous 
decisions. Together with Rias, which is deemed the worst based 
on the web visibility and brand treatment sub-criteria, is also the 
least favorable option for the root criterion. 

 
RESULTS AND DISCUSSION 
TABLE1: Data set 

 Accuracy Precision Recall Log Loss MCC Model Complexity 
Maxor Min 0.77 0.58 0.65 0.69 0.39 0.11 
AdaBoos 0.69 0.43 0.5 0.69 0.25 0.34 
Random 
Forest 

0.75 0.52 0.59 0.54 0.39 0.171 
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Decision Tree 0.65 0.4 0.65 0.67 0.27 0.11 
Bagging 0.77 0.58 0.5 0.55 0.39 0.28 

 
Accuracy Accuracy reflects the proportion of correct 

predictions. Maxor Min and Bagging achieve the highest 
accuracy (0.77), indicating their strong ability to generalize. 
Random Forest follows closely at 0.75, while AdaBoost and 
Decision Tree show lower accuracy scores of 0.69 and 0.65, 
respectively, indicating that they may miss some patterns in the 
data. Precision measures the proportion of true positive 
predictions out of all positive predictions. Maxor Min and 
Bagging both lead with an accuracy of 0.58, making them more 
reliable in situations where false positives need to be minimized, 
such as identifying anomalies or fraud in the supply chain. 
AdaBoost (0.43) and Decision Tree (0.4) have lower accuracy, 
indicating a higher chance of false positives. Recall measures 
the proportion of true positives that are correctly predicted. 
Maxor Min and Decision Tree show high recall (0.65), making 
them suitable for identifying important events such as stockouts 
or supplier failures. Random Forest performs moderately well 
(0.59), while Adaboost and Packing 0.5 have low recall scores, 
missing some important positive events. Log loss measures the 

uncertainty in the probability predictions, with lower values 
indicating better calibrated models. Maxor Min (0.69) and 
Decision Tree (0.67) exhibit relatively low log loss. Packing and 
Random Forest show slightly higher uncertainty with log loss 
values of 0.55 and 0.54, respectively. MCC (Matthews 
Correlation Coefficient) MCC assesses the overall prediction 
quality, considering all classes and is particularly useful for 
asymmetric datasets. Maxor Min, Random Forest, and Bagging 
share the top spot with MCC scores of 0.39, indicating strong 
overall performance. AdaBoost has the lowest MCC (0.25), 
reflecting its struggle to maintain balanced predictions across 
classes. Model Complexity Model complexity assesses 
computational demands and interpretation. Maxor Min and 
Decision Tree are simple models (0.11), suitable for real-time 
applications where speed and ease of implementation are 
essential. Bagging (0.28) and Random Forest (0.171) are 
moderately complex, while AdaBoost has a high complexity 
(0.34), requiring more resources for training and deployment. 

 

 
FIGURE 1: Data Set 

Figure 1 presents key performance metrics for machine 
learning model evaluation. The graph shows five essential 
metrics: precision (0.77), accuracy (0.58), recall (0.65), 
Matthews correlation coefficient (MCC) (0.39), and model 

complexity (0.11). These metrics are displayed in blue bar chart 
format with values ranging from 0 to 3.5 on the y-axis. The 
model demonstrates strong precision at 0.77, while maintaining 
moderate precision and recall values. The MCC, which indicates 
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overall model performance, shows moderate correlation at 0.39. 
The low model complexity score of 0.11 suggests a relatively 

simple model structure, which is useful for avoiding overfitting 
and ensuring computational efficiency. 

 
TABLE 2: 

 Accuracy Precision Recall Log Loss MCC Model Complexity 
Maxor Min 0.77 0.58 0.65 0.69 0.39 9.090909 
AdaBoos 0.69 0.43 0.5 0.69 0.25 2.941176 

Random Forest 0.75 0.52 0.59 0.54 0.39 5.847953 
Decision Tree 0.65 0.4 0.65 0.67 0.27 9.090909 

Bagging 0.77 0.58 0.5 0.55 0.39 3.571429 
 

Table 3 presents the performance metrics for the machine 
learning models—Maxor Min, Adaboost, Random Forest, 
Decision Tree, and Bagging—after applying normalization 
techniques to the dataset. Normalization ensures that all features 
contribute equally to the learning process of the model, affecting 
their precision, accuracy, recall, log loss, MCC, and model 
complexity. The interpretation of the results is as follows: 
Accuracy measures the overall proportion of correct predictions. 
Maxor Min and Bagging achieve the highest accuracy 
(0.212121), indicating their ability to generalize well after 
normalization. Random Forest follows closely (0.206612), while 
Decision Tree and Adaboost show lower accuracy scores of 
0.179063 and 0.190083, respectively, indicating weak overall 
performance.  

Accuracy assesses the reliability of positive predictions. 
Both Maxor Min and Bagging perform well in terms of 
accuracy (0.231076), which is suitable for tasks that require a 
reduction in false positives, such as detecting anomalies or 
fraud. Random Forest achieves moderate accuracy (0.207171), 
while AdaBoost (0.171315) and Decision Tree (0.159363) lag 
behind, indicating high rates of false positives. Recall estimates 
the proportion of true positives that are correctly predicted. 
Maxor Min and Decision Tree lead with a recall score of 
0.224913, making them more suitable for identifying important 
but rare events such as stockouts or supply chain disruptions. 
Random Forest follows closely (0.204152), while AdaBoost and 

Bagging have low recall scores (0.17301), suggesting that they 
may miss some positive events. Log loss measures the 
confidence of the model in its predictions, with lower values 
indicating better calibrated probability outputs. Random Forest 
performs better on this metric (0.171975), indicating higher 
confidence in its predictions. Maxor Min, AdaBoost, and 
Decision Tree exhibit similar performance with log loss values 
of 0.219745 and 0.213376, while Bagging (0.175159) provides 
moderate confidence. MCC (Matthews correlation coefficient) 
MCC considers all classes and assesses the overall quality of the 
predictions.  

Maxor Min, Random Forest, and Bagging perform equally 
well (0.230769), showing their strength in balancing true 
positives, false positives, and false negatives. Decision Tree 
(0.159763) and AdaBoost (0.147929) achieve lower MCC 
values, reflecting poor performance in balanced predictions. 
Model Complexity Model complexity reflects computational 
cost and interpretation. AdaBoost has a very low complexity 
(0.096298), which makes it effective for sorting in resource-
constrained environments, but its low performance on other 
metrics limits its use. Random Forest and Packing exhibit 
moderate complexity (0.19147 and 0.116934), balancing 
computational demand and performance. Maxor Min and 
Decision Tree have high complexity (0.297649), which may 
limit their use in time-sensitive tasks despite their strong 
performance. 

 
TABLE 3: Normalization of Decision Matrix 

 Normalization of DM 
 Accuracy Precision Recall Log Loss MCC Model Complexity 

Maxor Min 0.212121 0.231076 0.224913 0.219745 0.230769 0.297649 
AdaBoos 0.190083 0.171315 0.17301 0.219745 0.147929 0.096298 
Random 0.206612 0.207171 0.204152 0.171975 0.230769 0.19147 
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Forest 
Decision Tree 0.179063 0.159363 0.224913 0.213376 0.159763 0.297649 

Bagging 0.212121 0.231076 0.17301 0.175159 0.230769 0.116934 
 

Accuracy measures the proportion of correct predictions. 
Maxor Min and Bagging achieve the highest accuracy (0.77), 
indicating excellent generalization capabilities. Random Forest 
follows closely behind (0.75), with AdaBoost and Decision Tree 
scoring lower (0.69 and 0.65, respectively), reflecting weaker 
overall prediction performance. Precision Accuracy measures 
the reliability of positive predictions. Maxor Min and Bagging 
excel at precision (0.58), making them well-suited for tasks 
where minimizing false positives is critical. Random Forest 
achieves moderate accuracy (0.52), while AdaBoost and 
Decision Tree underperform with scores of 0.43 and 0.4, 
respectively. Recall Recall measures the proportion of true 
positives that are correctly identified. Maxor Min and Decision 
Tree achieve the highest recall (0.65), making them excellent for 
identifying important but rare events such as supply chain 
disruptions. Random Forest follows closely (0.59), while 
Packing and Adaboost show low recall (0.5), indicating that 
they may miss some important positive events. Log Loss Log 
Loss estimates the uncertainty of the predictions, with lower 
values indicating better calibrated probability outputs. Random 

Forest performs best (0.54), indicating its confidence in the 
predictions. Packing (0.55) is also good, while Maxor Min, 
AdaBoost, and Decision Tree exhibit slightly higher log loss 
(0.69 and 0.67), reflecting higher uncertainty in the predictions.  

MCC (Matthews Correlation Coefficient) MCC considers 
all classes and assesses the overall quality of the predictions. 
Maxor Min, Random Forest, and Bagging show balanced 
performance across classes, with a leading MCC of 0.39. 
Decision Tree (0.27) and Adaboost (0.25) perform poorly on 
this metric, indicating weak overall predictive consistency. 
Model complexity Model complexity reflects computational 
requirements and interpretation. AdaBoost has the lowest 
complexity (2.941176), making it effective for sorting in 
environments with limited computational resources. Bagging 
and Random Forest have moderate complexities (3.571429 and 
5.847953), balancing performance and computational cost. 
Maxor Min and Decision Tree exhibit high complexity 
(9.090909), which may hinder their scalability in resource-
constrained situations despite their strong performance on other 
metrics. 

 
TABLE 4: Weighted Normalized DM 

 Weighted Normalized DM 
 0.21 0.18 0.22 0.15 0.13 0.11 
 Accuracy Precision Recall Log Loss MCC Model Complexity 

Maxor Min 0.044545 0.041594 0.049481 0.032962 0.03 0.032741 
AdaBoos 0.039917 0.030837 0.038062 0.032962 0.019231 0.010593 

Random Forest 0.043388 0.037291 0.044913 0.025796 0.03 0.021062 
Decision Tree 0.037603 0.028685 0.049481 0.032006 0.020769 0.032741 

Bagging 0.044545 0.041594 0.038062 0.026274 0.03 0.012863 
 

Table 2 presents the weighted normalized performance 
metrics for five machine learning models: Maxor Min, 
AdaBoost, Random Forest, Decision Tree, and Bagging. Maxor 
Min and Bagging achieve high scores in precision (0.044545) 
and accuracy (0.041594), indicating reliable predictions and 
minimal false positives. Decision Tree and Maxor Min excel in 
recall (0.049481), which is suitable for detecting important 

events. Random Forest performs better in log loss (0.025796), 
which reflects high confidence in its predictions. AdaBoost has 
the lowest model complexity (0.010593), ensuring 
computational efficiency, while Maxor Min and Decision Tree 
are the most complex (0.032741). Overall, Maxor Min 
effectively balances prediction performance and complexity, 
while AdaBoost is better for resource-constrained tasks. 

 
TABLE 5: Si 
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 Si 
Maxor Min 0.231323 
AdaBoos 0.171602 

Random Forest 0.202451 
Decision Tree 0.201287 

Bagging 0.193338 
 

Table 5 presents the SI (Importance Index) metric for five 
machine learning models: Maxor Min, Adaboost, Random 
Forest, Decision Tree, and Packing. The SI metric measures the 
overall impact and reliability of each model based on its 
predictive performance across its various scenarios. Maxor Min 
stands out as the most significant model with the highest SI 
score of 0.231323. This suggests that it provides consistent and 
impactful predictions, making it ideal for critical supply chain 
tasks such as demand forecasting, inventory management, and 
anomaly detection. Random Forest Random Forest is in second 
place with a SI of 0.202451, reflecting its strong performance 
across multiple metrics. Its balance between accuracy and 
interpretability makes it a versatile choice for complex supply 

chain systems. Decision Tree Close to Random Forest, Decision 
Tree achieves an SI of 0.201287, showing its reliability in 
handling specific scenarios with high recall. Its simplicity and 
interpretability make it useful for tasks requiring actionable 
insights. The packing score is 0.193338, indicating a slightly 
lower significance, but showing reliability in ensemble learning 
scenarios. Its strengths lie in reducing variance and improving 
overall consistency. AdaBoost With a low SI of 0.171602, 
AdaBoost has limited significance in this context. Although 
computationally efficient, further optimization may be needed to 
match the reliability of other models. Overall, Maxor Min 
emerges as the most significant, followed by Random Forest for 
consistent performance and scalability. 

 
FIGURE 2:  Si 

The graph shows the silicon (Si) concentration measured at 
five time points, or sampling intervals. Starting at point 1, the Si 
concentration shows its peak value of approximately 0.23. There 
is a significant decline to approximately 0.17 at point 2, 
followed by a slight recovery to 0.20 at point 3. From points 3 to 

5, the concentration remains relatively constant, showing 
minimal variation and maintaining a level around 0.20. This 
pattern suggests an initial fluctuation in Si concentration. The y-
axis ranges from 0 to 0.25, allowing these subtle changes to be 
clearly visualized. 
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TABLE 6: Ki 

 Ki 
Maxor Min 1 
AdaBoos 0.741826 

Random Forest 0.875185 
Decision Tree 0.870153 

Bagging 0.835791 
 

Table 6 evaluates the KI (Key Impact) metric for five 
machine learning models—Maxor Min, AdaBoost, Random 
Forest, Decision Tree, and Bagging—to assess their overall 
influence and performance on supply chain optimization tasks. 
The KI metric is scaled, with 1 indicating high impact. With a 
KI score of 1, Maxor Min demonstrates the highest key impact, 
making it the most reliable and influential model. Its high score 
indicates consistent superiority on key performance metrics, 
making it well-suited for critical supply chain tasks such as 
forecasting, anomaly detection, and optimization.  

Random Forest Random Forest ranks second with a KI 
score of 0.875185. This reflects its strong predictive capabilities 
and applicability across a wide range of supply chain scenarios. 
It strikes a balance between performance and complexity, 
making it well-suited for handling high-dimensional data. 
Decision Tree is closely followed by Random Forest, with a 

score of 0.870153, indicating strong performance and high 
impact. Its simplicity and interpretability make it very useful for 
clear-cut decision-making applications such as supplier 
selection or shipment prioritization. Packing has a KI score of 
0.835791, which demonstrates reliable impact, but is slightly 
lower than its ensemble counterpart Random Forest.  

Its strength lies in reducing variance and improving model 
consistency, making it suitable for tasks requiring consistent 
performance. AdaBoost has a low KI score of 0.741826, 
reflecting moderate impact. Although it is computationally 
efficient, its impact is relatively low, suggesting potential for 
improvement in handling various supply chain challenges. In 
short, Maxor Min leads with the highest key impact, followed 
by Random Forest and Decision Tree, which demonstrate robust 
and reliable performance. 

 

 
 
FIGURE 3:  Ki 

The graph illustrates the performance comparison of five 
different machine learning algorithms, Maxor Min, AdaBoos, 

Random Forest, Decision Tree, and Bagging, as measured by 
the Ki metric. Maxor Min shows the highest performance with a 
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Ki value of approximately 1.0, while AdaBoos shows the lowest 
performance at 0.75. The Random Forest and Decision Tree 
algorithms achieve similar performance levels, both reaching 
0.9 on the Ki scale. Bagging maintains moderate performance 
with a Ki value of approximately 0.85. This comparison reveals 

that ensemble methods generally perform better, with Maxor 
Min standing out as the most effective algorithm among those 
tested. The y-axis scale ranges from 0 to 1, representing 
normalized performance scores. 

 
TABLE 7: Rank 

 Rank 
AdaBoos 4 

Random Forest 1 
Decision Tree 2 

Bagging 3 
 

Table 7 provides a ranking of machine learning models 
such as Adaboost, Random Forest, Decision Tree, and Packing. 
The ranking reflects the relative strength of the models and their 
suitability for important applications. 1. Random Forest retains 
the top spot, with Random Forest at the top. This represents a 
strong balance between accuracy, precision, and robustness. Its 
ability to handle complex datasets and produce reliable 
predictions makes it well-suited for dynamic supply chain 
scenarios such as demand forecasting and logistics optimization. 
Decision Tree Decision Tree comes in second place, 
demonstrating its effectiveness in providing interpretable and 
actionable insights. Its high performance in recall makes it 

particularly valuable for tasks that require identifying important 
but rare events, such as stockouts or supplier failures. Packing 
comes in third, with Packing providing reliable performance by 
reducing variance and improving model consistency. It is well 
suited for scenarios that require consistency, such as inventory 
classification or transportation planning, but lags behind 
Random Forest slightly in terms of predictive power. Adaboost 
has the lowest overall performance in this comparison. While 
computationally efficient and suitable for specific tasks, it falls 
short in areas such as recall and robustness, limiting its 
applicability in demanding supply chain environments. 

 
FIGURE 4:  Rank 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

AdaBoos Random Forest Decision Tree Bagging

Rank



Journal of Artificial intelligence and Machine Learning 
www.sciforce.org 

 
Nitesh Kumar.  R, “Optimizing Supply Chain Efficiency Using Machine Learning with ARAS Methodology”  Journal of Artificial intelligence and 
Machine Learning., 2025, vol. 3, no. 1, pp. 1–13. doi: https://10.55124/jdit.v1i2.261 12  

The bar graph shows a ranking comparison of four ML 
algorithms: Ada Boos, Random Forest, Decision Tree, sowie 
Bagging. Ada Boos shows the highest ranking at 4.0, indicating 
that it requires the most computational resources or complexity. 
Random Forest demonstrates the most efficient ranking at 
approximately 1.0, which provides the best balance of 
performance and resource utilization. Decision Tree ranks 2.0, 
placing it in the moderate range. Bagging has a ranking of 3.0, 
making it the second most resource-intensive algorithm. The y-
axis scale extends from 0 to 4.5, providing a clear visualization 
of the relative rankings among these algorithms. This 
comparison is valuable for selecting algorithms based on their 
efficiency of computation and practical application 
requirements. 
 
Conclusion 

The rankings of machine learning models rankings 
emphasize the suitability of each model for various tasks, 
reflecting their strengths and limitations. Random Forest ranks 
first, showing its strong balance between precision, accuracy, 
and recall. Its capability to handle intricate datasets and yield 
dependable forecasts renders it suitable for dynamic supply 
chain situations like demand forecasting and inventory 
optimization. In addition, its ensemble nature ensures consistent 

performance across a variety of datasets. Decision Tree, in 
second place, proves valuable due to its simplicity and 
interpretability. Its high recall performance makes it effective in 
identifying important but rare events such as supplier 
disruptions or stockouts. This interpretation allows supply chain 
managers to understand the decision-making process, which 
increases confidence in the model’s outputs. Packing, ranked 
third, provides reliable performance by reducing variance and 
improving consistency. Its consistent predictions make it 
suitable for scenarios that require consistency, such as 
transportation planning or inventory classification. However, it 
lags behind Random Forest in predictive power.  

AdaBoost, ranked fourth, exhibits computational efficiency 
but outperforms in areas such as recall and robustness. While 
suitable for specific tasks such as addressing noisy data, its 
lower ranking highlights the need for improvements when 
applied to more complex supply chain environments. In 
conclusion, Random Forest emerges as the most reliable and 
versatile model for supply chain optimization. Decision Tree 
and Packing follow closely, each excelling in specific aspects. 
AdaBoost, despite being ranked last, remains a valuable option 
for target applications that require lightweight computation. 
These rankings underscore the importance of selecting models 
based on a balance of task-specific requirements, predictive 
accuracy, interpretability, and computational efficiency. 
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