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Generally, studies show that nano-filler concentrations ranging from 0.5% to 5% by
weight yield optimal enhancements in tensile strength, toughness, and impact resistance.
Processing temperature (°C) is another critical parameter in nano composite fabrication.
The uniform dispersion of nano-fillers within the polymer or metal matrix requires
controlled processing conditions to avoid defects and inconsistencies. Higher processing
temperatures facilitate better matrix-filler interaction, enhancing the mechanical properties
of the final composite. However, extreme temperatures can degrade the polymer matrix or
lead to unwanted phase transformations in metal composites, thereby compromising
performance. Researchers have observed that maintaining a processing temperature
between 150°C and 300°C is ideal for ensuring effective nano-filler dispersion and strong
interfacial bonding. Curing time (hours) is also a vital factor in determining the final
properties of nano composites.

Proper curing ensures cross-linking and strong interfacial adhesion between the nano-
fillers and the composite matrix. Insufficient curing time results in incomplete bonding,
reducing strength and durability, while excessive curing can lead to brittleness. Studies
indicate that curing durations between 2 to 6 hours are typically effective, depending on
the material system and processing conditions. Optimizing curing parameters is essential
for achieving a well-structured and high-performance composite material. Tensile strength
(MPa) is a key mechanical property influenced by the incorporation of nano-fillers. The
addition of nano particles such as carbon nanotubes (CNTs), graphene, silica, or nano-clay
improves load transfer efficiency, thereby increasing tensile strength. Experimental data
suggest that with a 1-5% nano-filler concentration, tensile strength improvements of up to
50% have been observed compared to conventional composites. The interplay between
nano-filler concentration, processing temperature, and curing time is crucial in achieving
superior composite performance. The continuous advancement in nano-filler technology
and processing techniques will further expand the potential of nano composites, paving
the way for stronger, lighter, and more resilient materials in various engineering
applications.

© Nagababu Kandula.

*Corresponding author.; e-mail: nagababu.kandula@gmail.com




Journal of Artificial intelligence and Machine Learning

www.sciforce.org
Introduction

The unique properties of nonmaterial’s arise from their
extremely small size, typically in the range of 1 to 100
nanometers, which results in an increased surface area and
quantum effects that are absent in bulk materials. These
properties enable them to reinforce the composite matrix
effectively, leading to improved strength, flexibility, and
toughness. Carbon nanotubes, for instance, have an exceptional
strength-to-weight ratio, making them an ideal reinforcement in
polymer composites.[1] Traditional composites often suffer from
weaknesses such as brittleness and poor fracture resistance,
which limit their application in high-stress environments. The
inclusion of nanoparticles helps in stress transfer and crack
deflection, thereby increasing the durability of the composite.
For example, the addition of silica nanoparticles in epoxy resins
enhances their toughness and reduces crack propagation, making
them ideal for use in coatings, adhesives, and aerospace
components.[2] Thermal stability is another crucial factor where
nanotechnology has made remarkable contributions.

Conventional composites may degrade or lose their strength
at high temperatures, limiting their use in extreme environments.
However, Nano fillers such as grapheme and ceramic
nanoparticles improve the thermal conductivity and heat
resistance of composites, allowing them to withstand harsh
conditions. This is particularly beneficial in aerospace and
automotive applications, where materials must endure high
temperatures without compromising their structural integrity.[3]
Electrical conductivity is another area where nanotechnology has
enhanced composite materials. Traditional polymer composites
are usually insulating, which limits their application in electronic
devices. However, by incorporating conductive nonmaterial’s
such as carbon nanotubes, grapheme, and metallic nanoparticles,
these composites can achieve excellent electrical conductivity.
[4] Despite the remarkable benefits, the integration of
nanotechnology in composite materials also poses challenges.

The dispersion of nanoparticles within the matrix is a
critical issue, as poor dispersion can lead to agglomeration,
reducing the effectiveness of reinforcement. Advanced
processing techniques such as ultra sonication, high-shear
mixing, and chemical fictionalization have been developed to
overcome these challenges and ensure uniform distribution of
nanoparticles.[S]Researchers are exploring the use of bio-based
nanomaterials  for  sustainable composites, self-healing
nanocomposites that can repair damage autonomously, and
multifunctional materials with enhanced performance in diverse
applications. As technology progresses, the cost-effectiveness
and large-scale production of nanocomposites will improve,
making them more accessible for widespread industrial
applications.[6] The incorporation of nanomaterial’s has
addressed many limitations of traditional composites, leading to
stronger, lighter, and more durable materials for various
industries.

While challenges remain in terms of dispersion, processing,
and safety, ongoing research and innovation continue to push the
boundaries of Nano composite technology. [7] Nanotechnology

has emerged as a groundbreaking innovation in materials
science, transforming the way composite materials are designed,
manufactured, and utilized across various industries. However,
conventional composites often face limitations such as
brittleness, lack of toughness, poor thermal and electrical
conductivity, and susceptibility to environmental degradation.
The integration of nanotechnology into composite materials has
led to remarkable enhancements in their mechanical strength,
durability, thermal stability, electrical conductivity, and overall
performance.[8] By incorporating Nano scale reinforcements
such as carbon nanotubes (CNTs), grapheme, Nano clays, metal
nanoparticles, and ceramic Nano fillers, researchers have
developed Nano composites that exhibit superior structural
integrity, improved multifunctionality, and extended longevity.
This advancement has not only broadened the scope of
composite material applications but has also paved the way for
next-generation materials with unique and tailored properties.[9]
For example, carbon nanotubes and grapheme both of which
possess extraordinary strength-to-weight ratios serve as excellent
reinforcement agents in polymer composites.

These nonmaterial’s improve crack resistance, fracture
toughness, and mechanical durability, making them ideal for
applications that demand lightweight yet robust materials, such
as aerospace structures, sports equipment, and advanced
automotive components. Additionally, the incorporation of silica
and alumina nanoparticles into epoxy resins has been shown to
enhance toughness and reduce crack propagation, which is
essential for coatings, adhesives, and structural components in
extreme environments.[10] Conventional polymer-based
composites often exhibit poor thermal conductivity and limited
heat resistance, restricting their use in high-temperature
applications.

However, the inclusion of Nano fillers such as grapheme,
boron nitride, and ceramic nanoparticles has significantly
enhanced the thermal stability and heat dissipation of
composites. Grapheme, for instance, possesses exceptional
thermal conductivity, which allows heat to be efficiently
transferred and dissipated, making it a valuable addition to
composites used in aerospace and automotive industries where
materials are subjected to extreme temperatures.[11]
Furthermore, ceramic Nano fillers such as alumina and silica not
only improve heat resistance but also contribute to the overall
structural integrity of composites in high-temperature
environments. These advancements have led to the development
of thermally stable Nano composites that can withstand harsh
conditions without compromising performance, thus expanding
their applicability in sectors such as space exploration, defense,
and power generation.[12]

In addition to mechanical and thermal enhancements,
nanotechnology has revolutionized the electrical properties of
composite materials. Traditionally, polymer-based composites
are insulators, limiting their application in electronic and
electrical industries. However, by incorporating conductive
nanomaterial’s such as carbon nanotubes, grapheme, and
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metallic nanoparticles, researchers have successfully developed
electrically conductive Nano composites.

These materials exhibit excellent electrical conductivity,
making them suitable for applications in flexible electronics,
electromagnetic shielding, sensors, and energy storage devices.
The ability to engineer composites with tailored electrical
properties has opened up new possibilities for smart materials,
wearable technology, and advanced electronic systems.[13]
Another significant benefit of integrating nanotechnology into
composite materials is the enhancement of barrier properties,
which provide improved resistance to moisture, gas permeation,
UV radiation, and chemical exposure. The presence of Nano
clays in the composite matrix reduces permeability by creating a
tortuous path for gas molecules, effectively preventing their
diffusion and prolonging the material’s lifespan. Similarly, the
incorporation of UV-resistant nanoparticles into polymer
coatings enhances their ability to withstand prolonged exposure
to sunlight without degrading, which is particularly valuable in
outdoor applications such as automotive coatings, building
facades, and marine structures.[14] Poor dispersion can lead to
agglomeration, reducing the effectiveness of reinforcement and
compromising mechanical and thermal properties.

As a result, extensive research is being conducted to
evaluate the toxicity, bioaccumulation, and environmental
impact of Nano composites, leading to the development of
guidelines and regulations for their safe use. Efforts are also
being made to explore bio-based and sustainable nanomaterial’s
derived from natural sources, which can reduce the
environmental footprint of nanotechnology applications while
maintaining high-performance characteristics. One of the most
exciting developments is the creation of self-healing Nano
composites, which have the ability to repair damage
autonomously.[15]

These materials contain Nano capsules filled with healing
agents that are released when the composite structure
experiences damage, effectively sealing cracks and restoring

mechanical integrity. Such self-healing materials have
significant implications for aerospace, infrastructure, and
biomedical applications, where long-term durability and

reliability are critical. Additionally, researchers are exploring
smart Nano composites with shape-memory properties, which
can respond to external stimuli such as temperature, light, or
electrical fields to change shape, making them valuable in
medical implants, robotics, and adaptive structures. Another key
area of advancement is the integration of nanotechnology with
additive manufacturing (3D printing) to develop customized
Nano composite structures with precise control over material
properties. The combination of nonmaterial’s with 3D printing
techniques allows for the fabrication of complex geometries with
enhanced mechanical and functional characteristics, enabling the
production of lightweight yet strong components for aerospace,
defense, and healthcare applications. Furthermore, advances in
biodegradable Nano composites are being explored to address
environmental concerns, offering sustainable alternatives for
packaging, medical implants, and consumer goods.[16] The role

of nanotechnology in enhancing composite materials is
transformative, offering unparalleled improvements in
mechanical strength, thermal stability, electrical conductivity,
and environmental resistance. By leveraging the unique
properties of nanomaterial’s, researchers and engineers have
successfully addressed many limitations of traditional
composites, leading to the development of high-performance
materials suited for diverse applications. While challenges such
as nanoparticle dispersion, processing scalability, and
environmental impact remain, ongoing advancements in
nanotechnology continue to push the boundaries of material
innovation. [17]

MATERIAL AND METHODS
Material
Nano-filler Concentration (%):

Nano-filler Concentration (%) refers to the proportion of
nanomaterial’s, such as carbon nanotubes, graphene, Nano clays,
or metal nanoparticles, added to a composite matrix to enhance
its properties. The concentration of nano-fillers plays a crucial
role in determining the mechanical, thermal, electrical, and
barrier characteristics of the resulting nanocomposite. Typically,
small amounts of nano-fillers, ranging from 0.1% to 5% by
weight, can significantly improve the strength, toughness, and
conductivity of a composite due to their high surface area and
superior intrinsic properties. However, beyond an optimal
concentration, excessive nano-fillers may lead to agglomeration,
reducing their effectiveness and potentially weakening the
material by creating stress concentration points. Achieving a
uniform dispersion of nano-fillers within the matrix is essential
for maximizing their reinforcing effects. For instance, in
polymer Nano composites, a low concentration of well-dispersed
graphene or carbon nanotubes can dramatically enhance
electrical conductivity and mechanical strength, while in
structural applications; ceramic nano-fillers improve thermal
stability and wear resistance. Thus, precise control over nano-
filler concentration is critical for achieving the desired balance
of performance, process ability, and cost-effectiveness in
nanocomposite materials.

Processing Temperature (°C):

Processing temperature plays a critical role in determining
the properties, performance, and stability of composite materials.
It refers to the specific temperature range at which composite
materials, including Nano composites, are processed, cured, or
fabricated to achieve optimal mechanical, thermal, and chemical
properties. Higher processing temperatures often enhance
molecular mobility, promote better dispersion of nonmaterial’s,
and improve interfacial bonding between the matrix and
reinforcement. However, excessively high temperatures may
lead to degradation of polymer matrices, thermal stresses, or
unwanted phase transformations, negatively impacting the
structural integrity of the material. In contrast, lower processing
temperatures can result in incomplete curing, weak interfacial
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adhesion, and suboptimal mechanical properties. Advanced
processing techniques such as hot pressing, extrusion, and resin
infusion require precise temperature control to ensure
uniformity, minimize defects, and enhance the overall
performance of composites. Additionally, Nano composites with
thermally sensitive nanoparticles require careful temperature
optimization to prevent agglomeration or unwanted chemical
reactions. Ultimately, maintaining an appropriate processing
temperature is essential to achieving enhanced strength,
durability, and multi functionality in advanced composite
materials used in industries such as aerospace, automotive, and
electronics.

Curing Time (hours):

Curing time refers to the duration required for a material,
such as composites, adhesives, or coatings, to undergo a
complete chemical reaction and achieve its desired mechanical
and physical properties. This process is crucial in ensuring the
strength, durability, and stability of the final product. In
industrial applications, optimizing curing time is essential for
enhancing production efficiency and ensuring high-quality
results. For instance, in composite manufacturing, inadequate
curing can lead to defects such as incomplete polymerization,
weak bonding, or residual stresses, compromising structural
integrity. On the other hand, excessively long curing times may
delay production and increase costs. Advanced techniques, such
as heat-assisted curing, ultraviolet (UV) curing, and microwave-
assisted curing, have been developed to accelerate the process
while maintaining material performance. Additionally,
monitoring curing progress through methods like differential
scanning calorimetry (DSC) or dielectric analysis helps ensure
consistency and reliability. Understanding curing time is critical
across industries, from aerospace and automotive to construction
and biomedical applications, where material performance
directly affects safety and functionality.

Tensile strength (MPa)

Measured in megapascals (MPa), tensile strength is widely
used in material science and engineering to evaluate the
structural integrity and performance of materials under load.
Higher tensile strength indicates that a material can endure
greater forces without fracturing, making it ideal for applications
requiring durability and reliability, such as aerospace,
automotive, construction, and manufacturing. Various factors
influence tensile strength, including the material’s composition,
molecular structure, processing methods, and the presence of
reinforcements such as nanoparticles or fibers. Testing methods
such as the universal tensile test measure tensile strength by
subjecting a sample to controlled tension until failure. Engineers
use this data to select appropriate materials for specific
applications, ensuring safety, efficiency, and longevity. As
materials science advances, innovations in nanotechnology and
composite engineering continue to improve tensile strength,
expanding possibilities for high-performance materials.

MACHINE LEARNING ALGORITHMS
1. Linear Regression:

Linear regression is a fundamental statistical method used to
model the relationship between a dependent variable and one or
more independent variables. In its simplest form, known as
simple linear regression, it examines the linear relationship
between two variables by fitting a straight line (the regression
line) to the data. This line is defined by the equation y =mx + b,
where y is the predicted value, m represents the slope of the line
(indicating the rate of change), x is the independent variable, and
b is the y-intercept. The primary goal of linear regression is to
minimize the difference between the actual data points and the
predicted values, often achieved using the least squares method.
When multiple independent variables are involved, the model
extends to multiple linear regression, allowing for more complex
relationships. Linear regression assumes a linear relationship
between variables, homoscedasticity (constant variance of
errors), independence of errors, and normally distributed
residuals. It is widely used in fields like economics, engineering,
and social sciences for predicting outcomes and identifying
trends. Despite its simplicity, linear regression is powerful,
offering insights into data patterns, but it may not perform well
if the relationship between variables is non-linear or if there are
outliers influencing the results.

2. Random Forest Regression:

Random Forest Regression is an advanced machine learning
technique that builds on the concept of decision trees to provide
more accurate and robust predictions. Unlike a single decision
tree, which can be prone to overfitting and sensitive to variations
in the data, Random Forest creates an ensemble of multiple
decision trees, each trained on different subsets of the data and
features. This ensemble approach reduces variance and improves
predictive performance. During training, the algorithm selects
random samples from the dataset (a process called
bootstrapping) and randomly chooses a subset of features at each
split in the tree. Each tree in the forest makes its own prediction,
and the final output is typically the average of these individual
predictions, resulting in a more stable and reliable model.
Random Forest Regression is highly effective in handling non-
linear relationships, complex interactions between variables, and
datasets with missing values or outliers. It also provides feature
importance scores, helping identify which variables have the
most influence on the target outcome. While it is more
computationally intensive than simpler models like linear
regression, its flexibility, accuracy, and ability to prevent
overfitting make it a popular choice for various regression tasks
across industries such as finance, healthcare, and engineering.

3. Support Vector Machines:

Support Vector Machines (SVM) are powerful supervised
learning algorithms used for classification and regression tasks.
In the context of regression, known as Support Vector
Regression (SVR), SVM aims to find a function that best fits the
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data within a specified margin of tolerance. Unlike traditional
regression methods that minimize the error between predicted
and actual values, SVR focuses on fitting the data within a
boundary or "epsilon-tube," where deviations within this tube
are not penalized. The goal is to find a hyperplane that
maximizes the margin between the data points while maintaining
as many points as possible within this boundary. For data that is
not linearly separable, SVM uses kernel functions (such as

the data into higher-dimensional spaces where a linear
separation becomes possible. This makes SVM highly effective
for modeling complex, non-linear relationships. Additionally,
SVM is robust to outliers since only data points outside the
margin (support vectors) influence the model. While SVM can
be computationally intensive, especially with large datasets, it
offers excellent accuracy and generalization capabilities, making
it suitable for tasks in fields like bioinformatics, finance, and

linear, polynomial, or radial basis function kernels) to transform image recognition where precision is critical.
RESULT AND DISCUSSION
TABLE 1.Role of Nano Technology in Composite Material
Nano-filler Processing Curing Time (hours) Tensile Strength
Concentration (%) Temperature (°C) (MPa)
0.5 150 2 80
1 160 2.5 95
1.5 170 3 110
2 180 3.5 120
2.5 190 4 130
3 200 4.5 140
3.5 210 5 150
4 220 5.5 160
4.5 230 6 165
5 240 6.5 170
0.5 140 1.5 75
1 150 2 90
1.5 160 2.5 100
2 170 3 115
2.5 180 35 125
3 190 4 135
3.5 200 4.5 145
4 210 5 155
4.5 220 5.5 160
5 230 6 165

The data in Table 1 illustrates the impact of nano-filler
concentration, processing temperature, and curing time on the
tensile strength of composite materials. A clear trend emerges
where increasing the nano-filler concentration from 0.5% to 5%
significantly enhances tensile strength, suggesting that higher
nano-filler content improves the mechanical properties of
composites. For example, at 0.5% concentration and 150°C

processing temperature, the tensile strength is 80 MPa, whereas
at 5% concentration and 240°C, it reaches 170 MPa.
Additionally, processing temperature and curing time also play
pivotal roles. Higher temperatures and longer curing times
correspond to increased tensile strength, likely due to better
cross-linking and matrix reinforcement. For instance, at 3%
nano-filler, increasing the temperature from 190°C to 200°C and
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curing time from 4 to 4.5 hours improves tensile strength from
135 MPa to 140 MPa. Comparing similar concentrations at
different processing conditions (e.g., 0.5% at 150°C vs. 140°C)
shows that lower temperatures slightly reduce tensile strength.
This indicates that optimizing both nano-filler content and

TABLE 2.Descriptive Statistics

processing parameters is crucial for maximizing composite
performance. Overall, nanotechnology significantly enhances
composite materials' strength, making them suitable for
advanced engineering applications.

Nano-filler Processing Curing Time Tensile
Concentration (%) Temperature (°C) (hours) Strength (MPa)
count 20 20 20 20
mean 2.75 190 4 129.25
std 1.47345 29.9122 1.49561 30.0996
min 0.5 140 1.5 75
25% 1.5 167.5 2.875 107.5
50% 2.75 190 4 132.5
75% 4 2125 5.125 156.25
max 5 240 6.5 170

Table 2 presents the descriptive statistics for nano-filler
concentration, processing temperature, curing time, and tensile
strength in composite materials. The mean nano-filler
concentration is 2.75%, with a standard deviation of 1.47%,
indicating moderate variability in filler content across the
samples. The processing temperature averages 190°C, with
values ranging from 140°C to 240°C. The standard deviation of
29.91°C suggests a wide range of thermal conditions applied
during processing. Curing time varies from 1.5 to 6.5 hours,
with a mean of 4 hours and a standard deviation of 1.49 hours,
highlighting differences in the duration of the curing process
across samples.Tensile strength shows a mean value of 129.25

MPa, with a considerable spread indicated by a standard
deviation of 30.10 MPa. The minimum tensile strength recorded
is 75 MPa, while the maximum reaches 170 MPa, reflecting the
significant effect of nano-filler concentration and processing
parameters on material strength. The interquartile range (IQR)
shows that 50% of the data falls between 107.5 MPa and 156.25
MPa. The median tensile strength is 132.5 MPa, suggesting that
most samples exhibit relatively high mechanical performance.
These statistics underline the importance of optimizing nano-
filler concentration, temperature, and curing time to achieve
superior composite strength.
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Effect of Process Parameters
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FIGURE 1.Scatter plot of the various Role of Nano Technology in Composite Material process parameters

FIGURE 1 presents a scatter plot matrix illustrating the
interrelationships between key process parameters in the role of
nanotechnology in composite materials. The variables plotted
include Nano-filler Concentration (%), Processing Temperature
(°C), Curing Time (hours), and Tensile Strength (MPa). Each
subplot shows pairwise comparisons, allowing for the
identification of potential correlations or trends between
variables. The diagonal plots represent the distribution of each
parameter, with histograms highlighting the spread of values.
The scatter plots off the diagonal show how two variables
interact. For example, Tensile Strength appears to increase with
higher Nano-filler Concentration, Processing Temperature, and

Curing Time, suggesting positive correlations. The scatter plots
are tightly clustered along upward trends, indicating that as
these process parameters increase, the tensile strength of the
composite material also improves. This relationship underscores
the importance of optimizing nano-filler concentration,
processing temperature, and curing time to enhance the
mechanical properties of composite materials. The figure
provides valuable insight into how nanotechnology parameters
can be fine-tuned to achieve desired performance outcomes in
composites, highlighting the role of precise control in material
engineering for improved tensile strength and durability.
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FIGURE 2.Correlation heat map between the process parameters and the responses

FIGURE 2 illustrates a correlation heat map that quantifies
the relationships between key process parameters Nano-filler
Concentration (%), Processing Temperature (°C), Curing Time
(hours)and the response variable, Tensile Strength (MPa). The
correlation coefficients, ranging from -1 to 1, indicate the
strength and direction of linear relationships, with values close
to 1 representing strong positive correlations.In this heat map,
all variables exhibit extremely high positive correlations, with
coefficients ranging from 0.99 to 1.00. Specifically, Processing
Temperature and Curing Time show a near-perfect correlation
of 1.00, suggesting these parameters increase in tandem.
Similarly, Nano-filler Concentration also strongly correlates

with both Processing Temperature and Curing Time at 0.99,
indicating that these process parameters are interrelated and
likely optimized together.The correlation between the process
parameters and Tensile Strength is consistently high at 0.99,
signifying that increases in Nano-filler Concentration,
Processing Temperature, and Curing Time contribute directly to
enhancedTensile Strength. This reinforces the importance of
finely tuning these variables to maximize material performance.
The uniformity in high correlations suggests that
nanotechnology parameters in composite materials are highly
interdependent, making it crucial to balance them to achieve
desired mechanical properties.
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FIGURE 3. Predictive performance of the linear regression predictive model in Role of Nano Technology in Composite Material (a)

train; (b) test.

FIGURE 3 presents the predictive performance of a Linear
Regression (LR) model applied to assess Tensile Strength
(MPa) in the context of nanotechnology's role in composite
materials. The figure comprises two scatter plots: (a)For the
training and testing data, both plots illustrate the relationship
between Predicted Tensile Strength and Actual Tensile Strength.
The dotted diagonal line represents the ideal case where
predictions perfectly align with actual values. In plot (a) for the
training data, the points are tightly clustered along this diagonal,
indicating a strong correlation between the model's predictions
and actual values. This suggests that the linear regression model
effectively captures the relationship between process parameters
and tensile strength during training. The minimal deviation from

the diagonal line demonstrates the model's accuracy and
reliability within the training dataset. In contrast, (b) Testing
Data shows fewer data points, and while they still align
reasonably well with the diagonal, slight deviations are visible.
This indicates that while the model generalizes well, there may
be minor discrepancies when applied to unseen data, a common
occurrence in predictive modeling. Overall, the model
demonstrates high predictive performance, confirming that
linear relationships between nano-filler concentration,
processing parameters, and tensile strength are well captured by
the linear regression approach.
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FIGURE 4.Effect of number of repressor in random forest regression on Number of Estimators vs Mean Squared Error

FIGURE 4 illustrates the impact of the Number of
Estimators on the Mean Squared Error (MSE) in a Random
Forest Regression (RFR) model, used to predict tensile strength
in composite materials influenced by nanotechnology. The plot
shows the relationship between the number of decision trees
(estimators) in the random forest and the resulting prediction
error, measured by MSE. Initially, the MSE fluctuates, starting
around 15.5 for 100 estimators, increasing to nearly 17 at 200
estimators, and then gradually decreasing as the number of
estimators increases. The lowest MSE, around 13, is observed at
700 estimators, indicating optimal model performance at this

10

point. Beyond this, the error slightly increases again, reaching
14.5 at 900 estimators, before marginally decreasing at 1000
estimators. The trend suggests that increasing the number of
estimators generally improves model accuracy by reducing the
MSE, up to a certain point. However, after 700 estimators,
additional trees yield diminishing returns or slight overfitting,
causing an increase in MSE. This behavior highlights the
importance of tuning the number of estimators to balance model
complexity and performance, ensuring accurate predictions
without unnecessary computational overhead in the context of
nanotechnology-enhanced composite materials.
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FIGURE 5. Effect of number of repressor in random forest regression on Number of Estimators vs Mean Absolute Error
the MAE generally decreases, reaching around 3.11 at 400

illustrates the effect of the Number of

FIGURE 5

Estimators on the Mean Absolute Error (MAE) in a Random

Forest Regression (RFR) model, which is used to predict tensile

strength in nanotechnology-enhanced composite materials. The
plot showcases how varying the number of decision trees in the
model influences the average magnitude of prediction errors.
The MAE starts at approximately 3.22 for 100 estimators and
peaks at 3.25 with 200 estimators, indicating slightly higher
error at this early stage. As the number of estimators increases,

estimators, signifying the model's best predictive performance
with minimal absolute error at this point. However, after this
optimal point, the MAE rises again to 3.21 at 900 estimators,
suggesting potential overfitting or diminishing returns with

additional trees.

11
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FIGURE 6.Effect of number of repressor in random forest regression on Number of Estimators vs R2 Score

FIGURE 6 illustrates the effect of the Number of
Estimators on the R? Score in a Random Forest Regression
(RFR) model, applied to predict tensile strength in
nanotechnology-enhanced composite materials. The R? score,
also known as the coefficient of determination, measures how
well the model explains the variability of the response data
around its mean. Higher values indicate better model
performance. Initially, the R? score is around 0.9890 for 100
estimators, followed by a slight dip to 0.9880 at 200 estimators,
indicating a minor decrease in model performance. However, as
the number of estimators increases, the R? score improves
consistently, reaching 0.9899 at 600 estimators. The highest R?

12

score, approximately 0.9915, is observed at 700 estimators,
suggesting that the model achieves optimal predictive
performance at this point. Beyond 700 estimators, there is a
slight decline in the R? score to around 0.9900 at 900 estimators,
reflecting diminishing returns with additional estimators. This
trend suggests that while increasing the number of estimators
generally enhances the model’s explanatory power, excessive
estimators may lead to overfitting or unnecessary complexity
without significant performance gains. Optimal tuning around
700 estimators balances accuracy and computational efficiency
in RFR for composite materials.
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FIGURE 7.Predictive performance of the random forest regression predictive model in Role of Nanotechnology in Composite

Material a) train b) test

FIGURE 7 presents the predictive performance of the
Random Forest Regression (RFR) model for tensile strength in
nanotechnology-enhanced composite materials, with separate
plots for training and testing data. In the training data (right
plot), the predicted tensile strength values align closely with the
actual values, as shown by the clustering of data points along
the diagonal line representing perfect prediction. This indicates
a high degree of model accuracy on the training set, suggesting
that the model has effectively learned the relationships between
the input features (such as nano-filler concentration, processing
temperature, and curing time) and the tensile strength. The tight
clustering along the diagonal suggests minimal error and a

Support Vector Machines (SVM)

Predicted vs Tensile Strength (MPa) (Training data)
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strong model fit, characteristic of Random Forest's robust
learning capabilities. In the testing data (left plot), the predicted
tensile strength values also follow the diagonal line, although
with slightly more deviation compared to the training data. This
indicates that while the model generalizes well to unseen data,
there may be minor discrepancies between predictions and
actual values. However, the deviations are minimal,
demonstrating the model's strong predictive performance and
minimal overfitting. Overall, the RFR model demonstrates
excellent predictive capabilities for both training and testing
datasets, confirming its suitability for modeling the role of
nanotechnology in composite material performance.

Predicted vs Tensile Strength (MPa) (Testing data)
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FIGURE 8.Predictive performance of the Support Vector Machines predictive model in Role of Nanotechnology in Composite

Material a) train b) test

FIGURE 8 illustrates Support Vector Machines (SVM)
model in estimating tensile strength for nanotechnology-
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enhanced composite materials, with separate visualizations for
training and testing datasets. In the training data plot (left), the
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predicted tensile strength values exhibit a near-perfect alignment
with the actual values, as indicated by the tight clustering of
data points along the diagonal line, which represents an ideal
prediction scenario. This strong correlation suggests that the
SVM model has effectively captured the underlying
relationships between the input features (such as nano-filler
concentration, processing temperature, and curing time) and the
resulting tensile strength. The minimal deviation from the
diagonal line reflects high model accuracy and low training
error, highlighting the SVM's capability to fit complex data
patterns while maintaining a strong margin of separation.In the

TABLE 3.Regression Model Performance Metrics (Training Data)

testing data plot (right), the predicted tensile strength values also
follow the diagonal trend, though with slightly more dispersion
compared to the training set. While a few data points deviate
from the ideal line, the overall alignment indicates good
generalization to unseen data. This suggests that the SVM
model maintains predictive accuracy without significant
overfitting, effectively translating its training knowledge to new
samples.Overall, the SVM model demonstrates strong predictive
performance for both training and testing datasets, underscoring
its reliability in modeling the tensile strength of
nanotechnology-based composite materials

Data | Symbol Model R2 EVS MSE RMSE MAE MaxError | MSLE MedAE
Train LR Linear 0.9832 | 9.83E- | 1.32E+01 | 3.63E+00 | 3.16E+00 | 7.11E+00 | 9.95E- 2.58E+00
Regression 01 04
Train | RFR Random | 0.995486 | 9.95E- | 3.53E+00 | 1.88E+00 | 1.17E+00 | 6.55E+00 | 4.45E- 6.38E-01
Forest 01 04
Regression
Train | SVR Support | 0.998165 | 9.98E- | 1.44E+00 | 1.20E+00 | 8.95E-01 | 2.43E+00 | 1.07E- 6.43E-01
Vector 01 04
Regression

Table 3 presents the performance evaluation of three
regression models Linear Regression (LR), Random Forest
Regression (RFR), and Support Vector Regression (SVR) used
to predict the tensile strength of composite materials based on
nano-filler concentration, processing temperature, and curing
time. The metrics provided include R? (coefficient of
determination), Explained Variance Score (EVS), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Maximum Error, Mean Squared
Logarithmic Error (MSLE), and Median Absolute Error
(MedAE).with an R? of 0.9982, indicating it explains 99.82% of
the variance in the tensile strength data. It also has the lowest

TABLE 4. Regression Model Performance Metrics (Testing Data)

MSE (1.44), RMSE (1.20), and MAE (0.895), suggesting it
provides highly accurate predictions with minimal error. The
maximum error for SVR is 2.43 MPa, significantly lower than
LR and RFR, further supporting its precision.Random Forest
Regression also performs exceptionally well, with an R? of
0.9955 and slightly higher errors than SVR but lower than LR.
Linear Regression, while still strong (R? of 0.9832), has higher
errors across all metrics, indicating it is less effective for
modeling the complex relationships in the data. Overall, SVR
demonstrates superior predictive performance, followed closely
by RFR.

Data | Symbo Model R2 EVS MSE RMSE MAE MaxError | MSLE | MedAE
1

Test LR Linear 0.964057 9.68E- | 5.05E+01 | 7.11E+00 | 6.76E+00 | 8.97E+00 | 5.95E- | 6.76E+00
Regression 01 03

Test | RFR Random 0.988044 9.92E- | 1.68E+01 | 4.10E+00 | 3.25E+00 | 5.75E+00 | 2.36E- | 3.25E+00
Forest 01 03
Regression

Test | SVR Support 0.996362 9.97E- | 5.12E+00 | 2.26E+00 | 2.16E+00 | 2.82E+00 | 6.33E- | 2.16E+00
Vector 01 04
Regression
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Table 4 summarizes the performance of three regression
models Linear Regression (LR), Random Forest Regression
(RFR), and Support Vector Regression (SVR) on testing data
for predicting the tensile strength of composite materials. The
evaluation metrics include R? (coefficient of determination),
Explained Variance Score (EVS), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Maximum Error, Mean Squared Logarithmic Error
(MSLE), and Median Absolute Error (MedAE).Support Vector
Regression (SVR) outperforms both LR and RFR, achieving the
highest R? of 0.9964, indicating it explains 99.64% of the
variance in the test data. SVR also boasts the lowest MSE
(5.12), RMSE (2.26), and MAE (2.16), signifying highly
accurate and consistent predictions. Its maximum error is just

CONCLUSION

Nanotechnology has revolutionized the field of composite
materials, significantly enhancing their mechanical properties,
particularly tensile strength. The results from both experimental
observations and regression model predictions highlight the
direct and positive impact of nanotechnology on composite
strength, stability, and reliability. The experimental data reveals
a strong correlation between nano-filler concentration and
tensile strength. As the concentration of nano-fillers increases
from 0.5% to 5%, the tensile strength of the composite materials
improves substantially, from 75 MPa to 170 MPa. Furthermore,
nano-fillers can bridge micro-cracks and prevent their growth,
which contributes significantly to the overall strength and
durability of the materials. In addition to nano-filler
concentration, processing temperature and curing time also play
pivotal roles in determining the mechanical performance of
composite materials.

Higher processing temperatures and longer curing times
facilitate better dispersion of nano-fillers within the matrix and
promote more complete cross-linking reactions. This trend is
consistent across different concentrations, indicating that
thermal processing conditions must be optimized alongside
nano-filler content to achieve maximum material performance.
The statistical analyses further support these observations. The
descriptive statistics highlight a steady increase in tensile
strength with increasing nano-filler concentration and
processing parameters. The scatter plot matrix confirms strong
positive correlations between all variables, underscoring the
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